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BENDING AND NATURAL VIBRATION OF THE TRIPLE LAYER
PLATES WITH ELASTIC FOUNDATION

Introduction

Using of the composite plates in loaded structures is one of the ways to
improve the weight characteristics of spacecraft. The layered structural elements
are widely used in transport engineering and construction practice. Three-layer
plates are the most efficient in terms of strength and rigidity under bending
deformation.

A much attention is given to the development of the theory and methods
of calculation the layered structural elements of strength and stability at various
influences. The complexity of research the stressed-strained state of layered
systems stimulates the development of applied two-dimensional theories.
Among these theories the principal place is occupied by the theory which based
on the using the hypotheses for the whole package of layers in general.

Thus, the calculation of sandwich structures under static loads is an actual
task.

Formulation and solution of the problem

Elastic three-layer plate with a rigid filler is resilient manner. To describe
the kinematics package we adopted the hypothesis of broken line: the bearing
layers are valid Kirchhoff‘s hypothesis; in incompressible filler thickness
remains normal straight and does not change its length, but returns some extra

angle that makes with the coordinate axes value v, (x,y) ,wy(x, y) [1, 2]. On the

plate are distributed external surface load q(x,y), p,(x.,y), py(x, y) and the
reaction base. Reaction basis corresponds to the model of Winkler [3].
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ar = —kw (1)

where K is the stiffness of base; w is the plate deflection, a minus sign
indicates that the response is directed in the direction opposite deflection.
Using the introduced geometric hypotheses, the longitudinal displacement

in layer can be expressed by five unknown functions u,,U,,y,,y,,W.[1]

1

!yl

u® =u, +zy, - 2w, u® =u, +z2y, —2w,, (-c<z<c),
(2 _ 1
Uy” =U, —Cy, —2W,, ul) =u, —cy, —zw,,, (-c —h, <z <—) 2)

where Z is the distance from the considered fibers to the median plane of the
filler; U+Cy is the deflection of external base layer, the second base layer the

deflection will be correspondingly (u —cy)

The components of strain tensor expressed in five unknown functions
using Cauchy relations and expressions (2):

@ _ 1
Exi =Upox PO =W, €=U, +Cy, —2W, ,, (c<z<c+h)

G _ 3
Exi =Upox F2W, 0 =W, & =uy, +2y,, —ZW,,,, (-C<Z<c)

(2 _ 2

Exi = Uy —CW —IW,, €9 =uy,, —Cy,, —2W,,,, (—c—h, <z<—c)

W _.@_g @ _1 ®_ @ (3)_1 0 _ K (3)
€q T8 =Y 8y _E\Vx’ 8yz :‘gyz :0’ 2\|jy’ gyx :8xy .

Spherical and deviator components of strain tensor in this case will be the
following

(V; =¢; —&dy; L j=XY,2):

XX 3 XX 3 yy !
(3) /(3 _ .3 2(k) _ (k) (4)

7(3)
Xz ! yyz _Syz ! yxy _Sxy

xx. —¢€

We introduce the internal forces and moments by following relationship:

3 3
NG =3 [ oWz, NOO =3 [ oWdz,

k=1 hy k=1 hy

Q = j cDdz, Q, = j sz, Q(")—Z [ oldz,
k=Lp, )
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M) = Z j ozdz, My (k) — chs(")zdz My k) = Z j cs(k)zdz
k=lh, k=Lh, k=Lh,
where GE(I)((),G (k) ,0, are the components of the stress tensor in the layers of

the plate; integrals taken along the thickness of the K layer.
Balance equation derived from a variation principle of Lagrange:

O0A+dW =0. (6)
This variation of the external surface forces:
A= [[( pdu, + pdu, +(q+q, )dw)ds (7)
S

Variation of internal stress take into account work of filler in a tanhen
direction:

3
SW = jj{{z [ (69966 + 619569 + 201528 )dz} .
S

k=1 hy

12 (00859 + 0W5el )dz}dxd.

s (8)
Variations of displacements in layers are:
Sul =8u, +cdy, —zdw,
dul? =3du, +cdy, —z8w,, (c<z<c+h),
Su® =8u, + 28y, — 78w, ,
dul? =du, + 28y, —zéw,, (-c<z<c),

Su® =3u, —cdy, — 78w, ,

8u§1) =0u, —cdy, —z8w,, (-c—h,<z<-C). (9)

we obtain the system differential equations of equilibrium three-layered
rectangular plates on elastic foundation in the effort:

NXX’X+QXy’y=_pX’ NW’y+Qxy’x=_py’ Hxx’x+HXy’y_Qx=O (10)
Hyoy tHy o —Qy =0, My, +2H 0 +M . =—(q+0,).

To contact stresses and strains in the layers we using the ratio of Hooke's
law:

sf =26y, oM =3Ke", (k=123 j=x1y,2), (11)
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where G,,K, are the module sliding and volumetric strain; S{,c™ are the
deviator and ball components of stress tensor; y("), ®) are the components of

strain tensor.
The components of the stress tensor in layers considering the expressions

(5) and (11) will be:
(k) S(k) + G 4Gg(k) + Kﬁ(k) 2 GS(k) + KS(k) K;S(k) + K S(k)
3 3

o = Ke® + K e®; ol =2G,6; (12)

o\ =2G,e,,;

Xz

3 — .
oy, =2G38,;

where K;:Kk+gGk; k‘:Kk—gGk.

Substituting in (8) expression strain through the desired movement (3),
and using integration over the thickness of each layer, and taking into account
expressions (7), (6) and (1) we obtain from (10) the system of five linear
differential equations of equilibrium on the unknown displacements:

a1<ux’xx +uy’yx)+ a2 (Wx’xx +\Vy’yx)_ a3 (W’xxx +W’yyx)+ a‘8ux’yy +

T 8Wysyy =~ Py

al(uy,yy+ux,xy)+ a2(\py,yy+wx,xy)—a3(w,wy+w,xxy)+ AgUy s+
+ AWy =~ Py

az(ux,xx +uy,yx)+a4(\|fx,xX +\|/y,yx)—a5(w,xxx +W,yyx)+ gl +
+8oWysyy —87Wy =0,

az(uy,yy+ux,xy)+ a4(\yy,yy+\|;X,W)—a5(w,yyy+w,xxy)+ AgU o +

+ AWy~ =0, (
83 (U0 Uy g gy Fy 5 )+ 85 (W FW gy FW gy PV )~ %
—aG(W,XXXX+W,yWy+2 ,WXX)+kW —q, )
where
aizith+’
k=1

a, =c(h K —hK3);

+ h |
aszhl(c+%jK1 —hz(c+?2)K2,
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a, =’ (hK; + hZK;)+§c3K;;

ay =C{hl(c+%ij +h2(c+h—22jK2++§c3K§};

2

a, = h{c2 +chl+%2}Kf +h{c2 +ch, +%}K§ +§C3K§;
a, = 2G,C;

ag :kZS::lthk;

ay =Gyc(h, —hy);

a, = C2(Gh —G,h,) + %&eg.

In this paperwe using a numerical approach to solving the problem.

Considering a three-layer construction, which is the middle surface of
QcR2. The problem of determining the stress-strain state in the variational
formulation based on the minimum potential energy can be formulated as a
problem of minimizing a quadratic functional:

ueV, Y(u)=infY(v); veV, (14)
where V is the space of admissible displacements. Elements belonging to the
space V, satisfy the kinematic boundary conditions of the problem and the
requirements of the smoothness of the desired solution. Function Y(V)
represents a potential energy system

Y(v) = %a(v,v)—f(v), (15)
where oc(v,V)are a symmetric bilinear form. From the energy point of view,

a(v,v) determines the potential energy of the elastic deformation of the

structure, f (V) is the work of external forces.

In the calculation of the stress-strain state of structural components
,.exposed to vibration loads, it’s necessary to determine the natural frequencies
and corresponding mode shapes.The finding of the fundamental natural
frequency can be reduced to a minimization problem, where the functional is
determined by the ratio of the Rayleigh-Ritz method

oozzminM veVv. (16)

T(v)’

Here T1(v) is the amplitude of the strain energy, T(V) is a quantity
proportional with the factor o’ to peak value of kinetic energy. In the
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construction of variational-difference schemes for the three-layer sandwich
structures we using triangular element, which, in contrast to previously
developed models [4], is used approximation movements on different layers. To
approximate the deflection of thin bearing is used incomplete cubic polynomial.
Mid-plane displacement of the points of bearing layers along the x and y are
defined as linear polynomials within each triangle. Moving points of the middle
plane of the filler u,, v;, w, easily expressed in terms of the displacements of

the middle surfaces bearing layers, based on the conditions of sandwich
construction work without slip between the layers.

Applying adopted approximation of displacements, the functional (15),
(16) on the finite-dimensional space Vv, admissible functions are as follows

Y(Vh):%a(vh,vh)—f(vh), v, eV, (17)
_T0(v,)
F(vh)—T(V:), Vi €V (18)

To minimize the functional (17), (18) we proposed to use the method of
coordinate descent [5]. The choice of this method is due to the fact that its using
is needn’t in the formation and storage of mass and stiffness matrices of large
dimensions, the numbering of nodes in a sampling area is arbitrary.

Conclusion

We adduced basic equations for the problem bending vibrations of a
three-centered plate with on elastic foundation. Considering the stiffness of
elastic foundation leads to a significant refinement of the stress state that occurs
in a three-layer plate with external force action. We consider a numerical
method for determining the stress-strain state and the natural vibrations of
sandwich plates on elastic foundation. The method of coordinate descent is an
iterative method and stable rounding errors have little effect on the accuracy of
the final result. When solving a series of practical problems of bending and
vibration the maximum number of iterations was not more than 140. The error in
determining the deflection at the center of the plates is 0.2%. Data to determine
the maximum deflection and fundamental natural frequencies are compared with
the analytical results obtained in [1-3]. After 120 iterations, the maximum error
in the determination of basic natural frequency of 4.3%.
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