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Introduction 

Vibratory gyroscopes utilizing Coriolis effect were successfully used in 

vast amount of different applications since micro fabrication techniques made 

possible to reduce its cost in mass production  along with significant reduction 

in size [1, 2]. At the same time, Coriolis vibratory gyroscopes (CVG) tradition-

ally occupy niche of low accuracy sensors due to the low stability of its perfor-

mances under influence of the operational environment. One of the major 

sources of such instabilities is temperature variations that cause changes in all 

measurement characteristics of CVGs [3, 4]. In this paper we study the effect of 

temperature variations on the CVG with cylindrical sensitive element, develop 

empirical model of the temperature influences, identify its parameters, and de-

velop model of angular rate measurement error due to the temperature varia-

tions. Later we validate obtained models using experimental data. 

Temperature related zero-rate output problem 

Significant temperature related zero-rate output has been observed during 

experimental tests of CVG. For the temperature profile, shown in Fig. 1, and ze-

ro angular rate, CVG output is shown in Fig. 2 (uncompensated). 
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Fig. 1. Temperature profile 
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Fig. 2. CVG output with and without temperature compensation 

It is believed that temperature variations cause this bias through the tem-

perature dependent cross-damping. In this case excited primary oscillations of 

the sensitive element will induce secondary (output) oscillations even without 

external rotation being applied to the sensor.  

In order to develop mathematical model for this phenomenon let us first 

analyse how cross-damping affects dynamics of the CVG sensitive element. 

Sensitive element motion equations 

In the most generalized form, motion equations of the CVG sensitive el-

ement both with translational and rotational motion could be represented in the 

following form [5]: 

   

   

2 2
1 1 1 1 1 1 1 1 2 3 2 1

2 2
2 2 2 2 2 2 2 2 1 1 2

2 ,

2 .

x k x k d x g x d x q t

x k x k d x g x x q t

          


        

 (1) 

Here 
1x  and 

2x  are the generalized coordinates that describe primary (excited) 

and secondary (sensed) motions of the sensitive element respectively, 
1k  and 

2k  

are the corresponding natural frequencies, 
1  and 

2  are the dimensionless rela-

tive damping coefficients,   is the measured angular rate, which is orthogonal 

to the axes of primary and secondary motions, 
1q  and 

2q  are the generalized ac-

celerations due to the external forces acting on the sensitive element. The re-

maining dimensionless coefficients are different for the sensitive elements ex-

ploiting either translational or rotational motion. For the vibrating cylinder sen-

sitive element, for example, 
1 2 1d d  , 

3 1d  , 
1 2g  , 

2 2g  . For other sensi-

tive elements designs expressions for these coefficients can be found in [5]. 

If cross damping is present in the system, the motion equations (1) are 

transformed to the following form 
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
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 (2) 

Here 
12  and 

21  are the relative cross-damping coefficients. Constant 

cross-coupling through the damping can be removed by calibration. However, 

calibration is unable to deal effectively with the varying in time damping due to 

the temperature variations.  

Let us now analyse cross-damping related components in the amplitude of 

the secondary oscillations. Transforming equations (2) using amplitude-phase 

complex variables similarly to what has been demonstrated in [6], the following 

first-order equation for the slowly varying amplitudes ( 2 0A  ) can be produced: 

     2 2
2 2 2 2 2 2 2 2 12 1 12 2 2 .k j A k j k A j g j k A              (3) 

Here 
1A  is the constant (does not depend on time) complex amplitude of the 

primary oscillations 

10
1 2 2

1 1 12

q
A

k jk


   
,  

and complex amplitudes 
iA  are expressed in terms of the real amplitudes and 

phases as   0 ( )
0( ) ij t

i iA t A t e


 , where i equals 1 or 2 for the primary or second-

ary oscillations correspondingly. One should also note that disturbances in pri-

mary oscillations caused by secondary are considered negligible comparing to 

the forces from the excitation system. 

Applying Laplace transformation to both sides of the equation (3), and 

solving obtained algebraic equation for the secondary amplitude, results in 

 

 
1 2 2 12

2 2 2
2 2 2 2 2

( ) 2 ( )
( )

2 2

A s jg s j k s
A s

k j k s k j
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. (4) 

Solution (4) can be represented as a sum of the following two components: 

2 2 2( ) ( ) ( )A s A s A s   , 

 
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2 122 2
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      
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(5) 
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Here 2 ( )A s
 is part of the secondary amplitude due to the input angular rate, and 

2 ( )A s
 is due to the cross-damping. Corresponding to (5) transfer functions are 

hence defined as 

2 2 2 12( ) ( ) ( ) ( ) ( )A s W s s W s s     , 

 
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2 2 2 2 2
2 2 2 1 1 1
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2 2
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 

, 

     
2

2 2 2 2 2
2 2 2 1 1 1

2
( )

2 2

j k
W s

s j k s j k k jk

 

           
 
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(6) 

It is important to remember that part of the secondary amplitude due to the 

cross-damping will be undistinguishable from the one caused by the angular 

rate. Let us therefore derive transfer function relating input cross-damping to the 

output angular rate as 

12( ) ( ) ( )s W s s 
   , (7) 

where ( )s  is the measured erroneous angular rate caused by the cross-

damping. Quite apparently unknown transfer function ( )W s
  can be expressed 

using transfer functions from (6) as 

 
  

2 2
2 2 2 22

2 2
2 2 2 2 2 2 2

2 2( )
( )

( 0) 2 2

k k jkW s
W s

W s g k k s j s k



 

  
 

       
. (8) 

Transfer function (8) can be further simplified using assumptions that are rele-

vant to CVGs with cylindrical sensitive element, and are good approximations 

for other sensitive elements designs (see [6]). Namely, we can assume that natu-

ral frequencies are equal (
1 2k k k  ) as well as relative damping coefficients 

(
1 2     ), and primary oscillations excitation frequency is 

21 2k   . 

With these assumptions transfer function (8) becomes 

 

2

2

2
( )

k
W s

g s k







 
. (9) 

Transfer function (9) allows efficient analysis of errors due to the cross-

damping, which not only is present in the system, but can vary due to the differ-

ent reasons. 



26 

М е х а н і к а  г і р о с к о п і ч н и х  с и с т е м  

Empirical modelling of cross-damping 

Assuming that the cross-damping coefficient is a function of the tempera-

ture shift T from the calibration temperature, it can be approximated using poly-

nomial as 

12 12
0

( )
n

T i
i

i

T T


     . (10) 

Temperature related coefficients 
T
i  can be determined experimentally 

when ambient temperature is known (measured) and angular rate is absent (see 

Figures 1 and 2). However, in most of the cases we observe angular rate as the 

gyro output. In order to relate angular rate to the input cross damping, let us use 

steady state of the transfer function (9) as 

12
0 02

2
( ) ( 0) ( )

n n
T i T i
i i

i i

k
T W s T T T

g




 

         . (11) 

Parameters 
T
i  of the cross-damping model (11) can now be identified 

from the experimental data and found to have the following values: 
-3

0 1.0792 10T   , 
-5

1 4.631 10T    , 
-7

2 7.7044 10T   , 
-9

3 -5.8598 10T   . In-

fluence of the higher order components found to be negligible. In order to vali-

date cross-damping model (11), obtained temperature related angular rate can be 

subtracted from the gyroscope output, producing compensated output as shown 

in Fig. 2 (compensated line). As one can see, model (11) successfully compen-

sates bias for the steady temperature, while performs only fair during tempera-

ture transitions. 

Temperature compensation system 

In order to deal successfully with transient processes in CVG dynamics 

due to the temperature, let us synthesise temperature compensation system using 

cross-coupling compensation technique described in [7]. Structure of a simple 

partial decoupling system is shown in Fig.  3. 

Here transfer functions 
1( )W s , 

2( )W s , 
1( )C s , and 

2( )C s  define dynamics 

of the CVG sensitive element with respect to cross-damping as 

1 2 2
1 1 1

1
( )

2
W s

s k s k


  
, 

2 2 2
2 2 2

1
( )

2
W s

s k s k


  
, 

1 1 21 2( ) ( 2 )C s g k s   , 

2 2 12 1( ) ( 2 )C s g k s   , 

(12) 
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Fig. 3. CVG with the partial decoupling system 

and transfer function 
2( )G s  represents decoupling system and is given by 

12 1
2 2 2

2 2 2

2
( )

2

k s
G s

s k s k




  
. (13) 

Here 
12  is the temperature dependent cross-damping coefficient given by (10). 

By taking temperature measurements from the temperature sensor one can now 

combine these readings with the measured primary oscillations to implement 

low level (before demodulation) temperature compensation as shown below in 

Figure 4. 
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Fig. 4. Low-level temperature compensation system 

Results of realistic numerical simulations of this system operation are 

shown in Figure  5. 

In these numerical simulations temperature has sinusoidal shape ranging 

from – 50 to 50 degrees Celsius and period of 1 s. One can see, that proposed 

temperature compensation system successfully removed effect of cross-damping 

variations due to the temperature. 
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Fig. 5. Temperature compensation system simulation 

(dashed line – input angular rate, thin line – uncompensated out-

put, thick line – compensated output) 

Resume 

Developed in this paper model of temperature related errors in CVGs 

along with the empirical model of the cross-damping have been used to develop 

low-level temperature error compensation system, which significantly improved 

undesired influence of the temperature dependent cross-damping. However, 

proposed system still requires temperature sensor being used in the system. In 

our future research we plan to use model of cross-damping errors to develop 

stochastic system of temperature errors compensation that will not require tem-

perature measurements. 
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