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THE OSCILLATIONS OF ROD CONSTRUCTIONS WITH TAKING
INTO ACCOUNT THE ENERGY DISSIPATION

Introduction

The rod systems and rods, structural elements are widely used in aircraft.
During the exploitation they are exposed to vibration loads, therefore the
researching of dynamic characteristics of the rods is an actual problem of
vibration strength.

In studying of the dissipation of the internal energy in the materials the
one of the complicated problems is the problem when the material is acting by a
variable load. If the frequency of the exciting loads has definite ratios with the
eigenfrequency of oscillations, the level of dynamic loads is sharply increases.

The dissipative properties are important in these materials. The
appropriate models are created according on the dissipation mechanism of the
mechanical energy.

The problem’s statement and solving

Let us consider the bending vibrations of the rod taking into account the
energy dissipation, which are described by the equation [1]:
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where E is the modulus of elasticity, / - is the moment of inertia of the rod
elatively central axis, m-is the mass per unit length, f — is a function of the

dissipation energy, g — is the intensity of the disturbing load, p is he frequency

of the external excitation, € — a small parameter.

Z — axis is directed along the rod. We choosed the Navier condition as a
boundary conditions. The solution of the differential equation (1), at ¢(z)=0,
which corresponds to free vibration can be written as

W(z,t)=W(z)acosrt;
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where W (z) and o, are the waveform and the corresponding frequency, which
are defined by the equation (1) with €¢=0 (free oscillations of the rod
considering energy dissipation), @ and T — are the amplitude and the phase of
the oscillations that are satisfying the conditions of the first approximation [1]:



da

=¢A
7 1(a)
J 3)
% =, +&B,(a) = w(a).
The coefficients of the equations (3) are defined as
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where M = j mW?(z)dz .

[, — is the function of energy dissipation.

We define the relationship between the logarithmic decrement function
and energy dissipation.
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For weak damping we have
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Taking the time increment Az equal to the period the oscillations, we find
the amplitude of the increment for the period T = 21
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Taking into account (7), the expression (6) for the logarithmic decrement
of the amplitude can be written as:

A= _2_75@’ (8)
wa dt
da
but —=¢4(a), than
dt
wa
A(a)=——A. 9)
2w

Let us examine the expression
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Then, for weak damping
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Since the change in frequency Aw during the period T'= At = 2_71; is equal
®
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then the expression (11) takes the form
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Let us differentiate the second equation (3) with respect to time and obtain
do(a) _ dB, da. i
dt da dt
By substituting (14) into (15) we obtain
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Thus the coefficients 4;(a) ... Bi(a) of the first approximation equations
(4) can be expressed in terms of the values [ /| and [ ], which are depends on the
amplitude and frequency of the oscillations. These values can be obtained from
an experiment on vibrogram of the damped oscillations.

Let us consider the forced vibrations of the rod. A particular solution of
the equation (1) with the right side (¢#0) has the form in a first approximation:

W(z,t)=W(z)acost, T=pt+qQ. (18)

Where the amplitude o and phase angle ¢ are determined from the
equations
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A= j q(2)W (2)dz.

The coefficients 4,(a) and B;(a) of the first approximation equations (19)
are calculated by the formulas (9) and (17). With the stationary oscillations,
equation (19) becomes
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According to equation (20) it is easy to construct the resonance curve. If it
possible to ignore the influence of the energy dissipation on the natural
frequency (elliptical hysteresis loop), then in equations (18), (19) and (20) we
must take B;=0; o=w,.

When we solving problems for rod constructions the greatest interest has
the spectrum of the natural frequencies and corresponding mode shapes. It is
proposed to use a two-node finite element in the case of plane bending
vibrations of the rod. In this case, the nodal unknowns are deflections and
turning angles the nodes. For the approximation of displacements we use a third-
order polynomial:
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To find the spectrum eigenfrequencies and mode shapes is suggested to
use a method of increasing stiffness [2], which is based on the minimization of
functionals of the Rayleigh type. The method coordinatewise descent is applied
to solve the problem of minimizing the functional [3], which is one of the
methods of nonlinear programming. It should be noted that the combination of
increased stiffness method and the method coordinatewise descent, has allowed
to create efficient computer algorithm/
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Conclusions

We investigated the fluctuations rod structures based on energy
dissipation on the basis of an expansion in the small parameter. The obtained
solutions allow constructing the amplitude-frequency characteristics for
oscillations. It was demonstrated the using of the logarithmic decrement for
solving the problem of forced oscillations with the nonlinearity. A numerical
calculation of the oscillation rod structures on the basis of a two-level finite
element was represented.
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