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CALCULATION OF THE CRITICAL MOMENT OF THE WING 

CONSOLE STABILITY LOSS UNDER AERODYNAMIC LOAD 

У зв’язку із тим, що розрахунок аеродинамічних характеристик літака є 

дуже важливою частиною проєктування літака, виникає необхідність розвива-

ти чисельні та аналітичні методи дослідження коливань та стійкості елементів 

літака, у тому числі і крила. У роботі розглянуто аналітичний розв’язок задачі 

стійкості крила літака під дією аеродинамічного навантаження. Отримано 

значення критичного моменту у разі якого крило втрачає стійкість. Розрахун-

ки були проведені для характеристик такого типового матеріалу для авіабуду-

вання як алюміній. 

 Due to the fact that the calculation of the aerodynamic characteristics of an air-

craft is a very important part of aircraft design, there is a need to develop numerical 

and analytical methods for studying vibrations and stability of aircraft elements, in-

cluding the wing. The paper considers an analytical solution to the problem of sta-

bility of an aircraft wing under the action of aerodynamic loading. The value of the 

critical moment at which the wing loses stability is obtained. The calculations were 

carried out for the characteristics of such a typical material for aircraft construction 

as aluminum. 

Introduction 

For reliable and long-term use of the aircraft, it is necessary to calculate 

the structural elements of the aircraft as accurately as possible, especially under 

the influence of aerodynamic forces. In this matter, the use of analytical calcula-

tion methods is of great importance [1 – 3, 5 – 7]. Currently, the issue of design-

ing an aircraft structural element optimized for the perception of aerodynamic 

loads, primarily the wing, occupies an important place. 

Despite the large number of works on the calculation of aircraft structural 

elements, the stability of the wing console under the action of aerodynamic load-

ing is not sufficiently presented. It should be emphasized that when designing a 

wing, it is necessary to prevent destruction or irreversible change in the shape of 

aircraft elements, the appearance of unacceptably large vibrations and the devel-

opment of oscillatory instability of the structure, as well as to limit the move-

ment of structural elements [8 – 10]. 
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During steady flight, an aircraft is subjected to mass (conservative) and 

aerodynamic (non-conservative) forces. Mass forces include the weight of the 

aircraft itself, and aerodynamic forces include lift, engine thrust, and aircraft 

drag [9 – 11]. 

Nonconservative forces are those whose work on a closed loop is not zero, 

depends on the point of application of the forces and their trajectory, i.e. the law 

of conservation of mechanical energy is not fulfilled. This complicates the task 

of assessing the behavior of the wing under different types of loading. Let us 

consider the effect of engine thrust on the wing console of an aircraft. 

Statement of the problem 

To simplify the calculations, we will assume that the wing is a continuous 

isotropic beam of rectangular cross-section, which is loaded at the end by a con-

centrated moment L, and the engine itself is integrated into the wing, in order to 

ignore the torsion from the eccentricity between the center of stiffness of the 

wing and the direction of the thrust force. When the wing twists, the load also 

changes direction because the engine moves with the wing. 

 

Fig. 1. Scheme of wing deformation under the action of aerodynamic 

load 

Let us introduce a fixed coordinate system x0 y0 z0 . and also a moving 

system that rotates together with the cross-section of the strip x y z (Fig. 1) 

Let L be the moment vector before deformation, and L1 – after defor-

mation. We assume that the vector L1 is in the plane of the cross-section but 
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with the vector L it forms an angle λθ, proportional to the angle of rotation θ of 

the end section around Оz0. 

Then, projecting the vector L1 onto the fixed coordinate axes, we obtain 

with accuracy up to first-order quantities: 

 
 

,      ,       xo yo zo

du l
L L L L l L L

dz
     .  

For a moving coordinate system, we’re find: 

   
   

.,,z y z

du z du l
L L L L z L l L L L

dz dz
       

.
  

Solution of the problem 

Considering the equilibrium position of the wing adjacent to the unper-

turbed one, we obtain the system of equations 

 

 

2

2

.

y

d

d u
EJ L L l

dz

du ld du
GJ L L

dz dz dz


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

  

This system is equivalent to the equation 

 
2

2 2

2
λθ

d
k k l

dz


   ,  

where 
2

2 .
y d

L
k

EJ GJ
  

The integral of this equation has the form 

 1 2sin cos .С kz C kz l       

Subjecting the integral to the boundary condition of our cantilever fixa-

tion, namely: 

 
 

0 0 .
d l

dz


     

We obtain the characteristic equation: 

cos .
1

kl


 
 

  

The equality has real roots as long as 0,5  . Under this condition, the 

loss of wing stability occurs by the type of branching of equilibrium forms. 

At 0,5  , for any values of the moment L, there are no forms of equilib-

rium adjacent to the unperturbed one. In this case, the loss of stability can occur 

only by the type of oscillatory instability. 
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Let us consider the case when 1  . 

The equation of small oscillations has the form [3]: 

4 2 2

4 2 2

2 2 2
2

2 2 2

0

0 .

y

d

d u d d u
EJ L m

dz dz dt

d d u d
GJ L mr
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

  

And the boundary conditions are: 

 
 

 
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We are looking for a solution in the form [3, 4] 
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   

,

,

i t

i t

u z t U z e

z t z e







 
  

 

1 1 1 2 1 1 3 2 2

4 2 2 5 3 3 6 3 3

1 1 2 1 3 2

4 3 5 3 6 3

сh sh сos

sin сos sin ,

( ) сh sh сos

sin сos sin .

( )U С С С

С С С

D D D

D D D

             

           

           

        

  

where 

2

1,2 3

2

1
1 2 2

1

2

2
2 14 2

2

2
23

3 4 2

3

4 2

2 2 4 2

2

1 1
, ,

2 4

,

,

s ,

, , , .

d d

y y

d d

y

d d

y y

y

y y d y d

ns

GJ l GJ
l

EJ n EJ

GJ l GJ
l

EJ n

GJ GJ
l l

EJ n EJ

EJ nm l m Ml
n l s

EJ EJ GJ l EJ GJ




        



    
  




 
      

    


     
 

 
        

    

  

Having satisfied the boundary conditions, we obtain the following charac-

teristic equation 
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For a sufficiently narrow and long beam, which is what a wing is, we can 

assume that  

1 10, 1 20,h h l     

then 

2

2

2
10 .

y

d

EJ r
s

GJ l

   

What makes it possible 
3 1  , and therefore the characteristic equation 

is significantly simplified. 

Calculations were carried out for the characteristics of such a typical ma-

terial for aircraft construction as aluminum with the characteristics 

Elastic modulus 47 10Е MPa  , 

Poisson's ratio  0,34,   

Shear modulus 
42,6 10 .G MPa   

A graph of the dependence between the solutions of the characteristic 

equation on the parameter β is constructed. 

 It is clearly seen from the graph that the critical value of the parameter β 

is approximately equal to 1,43. 

And with the definition of β we can calculate the critical value of the mo-

ment L which is equal to M* 

1,43 .dEJGJ
M

l

 
   

At this value of the moment M*, the wing will lose stability. 

Knowing the actual value of the bending moment created by the engine 

and the critical value of the moment, which depends on the geometric character-

istics of the wing, you can protect it from oscillations and subsequent problems 

that arise with this. 
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Fig. 2. Graph of the dependence of the solutions of the characteristic 

equation on the geometric parameters of the wing model 

Conclusions 

The paper presents an analytical solution to the problem of stability of an 

aircraft wing under the action of a non-conservative load. The characteristic 

equation is determined analytically from the differential equations of small os-

cillations and the critical value of the moment of loss of stability of the aircraft 

console is calculated, which depends on the geometric and physical and mechan-

ical characteristics of the structure. Calculations were carried out for a wing 

made of aluminum. 
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