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ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ СПОСОБІВ ІНТЕГРАЦІЇ 

БЕЗПЛАТФОРМНОЇ ІНЕРЦІАЛЬНОЇ ТА СУПУТНИКОВОЇ 

НАВІГАЦІЙНИХ СИСТЕМ ЗА СЛАБО ЗВ’ЯЗАНОЮ СХЕМОЮ 

 У статті розглянуто дослідження впливу варіанту корекції інтегрованої 

безплатформної інерціальної навігаційної системи (БІНС) за даними супут-

никової навігаційної системи (СНС) із трьома рознесеними антенами на точ-

ність вирішення навігаційної задачі методом напівнатурного моделювання. 

Алгоритм інтегрованої БІНС досліджено у чотирьох варіантах корекції: по-

зиційній, позиційно-швидкісній, позиційно-кутовій та позиційно-швидкісно-

кутовій. 

Напівнатурне моделювання проведено на основі експериментальних да-

них, отриманих з інерціального модуля та СНС, установлених на наземній 

мобільній платформі. 

Інтегрована БІНС реалізована на основі інваріантної слабо зв’язаної схеми 

інтеграції з використанням фільтра Калмана із зворотними зв’язками та мо-

дифікацією Карлсона для підвищення чисельної стійкості алгоритму. 

 
The article presents a study of the impact of correction variants for an 

integrated strapdown inertial navigation system (INS) based on data from a 

satellite navigation system (SNS) with three spaced antennas on the accuracy of 

navigation task solution using the hardware-in-the-loop (HIL) simulation method. 

The integrated INS algorithm was investigated under four correction variants: 

positional, velocity-positional, angular-positional, and velocity-angular-positional. 

The HIL simulation was conducted using experimental data obtained from an 

inertial measurement unit (IMU) and SNS installed on a ground mobile platform. 

The integrated INS was implemented based on an invariant loosely coupled 

integration scheme using a Kalman filter with feedback and Carlson's modification 

to enhance numerical stability. 

Вступ 

Сучасні навігаційні системи рухомих об’єктів будуються на основі 

безплатформних інерціальних навігаційних систем (БІНС), які інтегрують-

ся із додатковими джерелами інформації з метою компенсації накопичених 

похибок. Основною системою, за якою відбувається інтеграція, є супутни-
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кова навігаційна система (СНС) [1, 2, 3]. Відомі схеми комплексування 

БІНС та СНС [3, 4]: розімкнута, слабо зв’язана, жорстко зв’язана, глибоко 

інтегрована. У разі використання двох і більше рознесених антен можна 

додатково отримати кути орієнтації об’єкта [4, 5, 6].  

У [7] проведено експериментальне дослідження точності СНС із 

трьома рознесеними антенами для різних відстаней рознесення у морсько-

му застосуванні. Показано можливість досягнення середньоквадратичної 

похибки 0,24  у разі рознесення антен на 0,7 м. У [8] розглядається слабо 

зв’язана схема інтегрування БІНС та СНС для наземного об’єкту із вико-

ристанням позиційної та швидкісної інформації від СНС. У [9] досліджено 

використання позиційно-швидкісно-кутової інформації від СНС у слабо 

зв’язаній схемі інтеграції з БІНС. 

Залежно від доступної інформації від СНС, можна виділити чотири 

варіанти інтеграції за слабо зв’язаною схемою: позиційний, позиційно-

швидкісний, позиційно-кутовий та позиційно-швидкісно-кутовий. Проте 

порівняльна оцінка точності цих способів у вирішенні навігаційної задачі 

залишається недостатньо дослідженою. 

Постановка задачі 

Метою є експериментальна оцінка точності вирішення навігаційної 

задачі під час використання позиційного, позиційно-швидкісного, пози-

ційно-кутового та позиційно-швидкісно-кутового способів інтегрування 

БІНС та СНС за слабо зв’язаною схемою.  

Принцип роботи інтегрованої БІНС 

За навігаційну систему координат взято географічний супроводжую-

чий тригранник ONHE, позначений як g , у якого вісь OH співпадає sз міс-

цевою вертикаллю, вісь OE спрямована на захід, а вісь ON - на північ. Сис-

тема координат, зв’язана з рухомими об’єктом, на якому встановлена 

БІНС – OXYZ, позначений, як . Вісь OX – збігається із поздовжною віссю 

рухомого об’єкта, OY – розташована у його вертикальній площині симетрії 

і направлена вгору, OZ – доповнює систему координат до правої. 

Інтегрована БІНС реалізована на основі інваріантної слабо зв’язаної 

схеми інтеграції з використанням фільтра Калмана [1, 3]. Структурну схе-

му інтегрованої БІНС представлено на рис. 1. 



17 

С и с т е м и  т а  п р о ц е с и  к е р у в а н н я  

 

Рис. 1. Структурна схема інтегрованої БІНС 

На рис. 1 позначено: ДКШ – блок, що складається із трьох датчиків 

кутової швидкості; АКС – блок, який складається із трьох акселерометрів; 

  - вектор кутової швидкості, котрий вимірюється ДКШ;  – вектор уяв-

ного прискорення, виміряного АКС;  – вихідний вектор навігаційних па-

раметрів БІНС (координати, швидкість та параметри орієнтації); 

ФК - дискретний фільтр Калмана (модифікація Карлсона);  - вектор спо-

стережень для ФК.  - вектор похибок БІНС, який оцінюється фільтром 

Калмана.
СНС СНС СНС СНС, ,

T

        - кути Ейлера-Крилова (рискання, тан-

гаж, крен), що задають поворот від географічної системи координат до 

зв’язаної із рухомими об’єктом, виміряні СНС; СНСR  - координати (довго-

та, широта та висота), отримані від СНС, 
СНСV  - швидкість у проекціях на 

осі ГСТ, отримана від СНС; X̂  - вихідний вектор навігаційних параметрів 

інтегрованої БІНС, у якому координати, швидкості та параметри орієнтації 

скориговані з урахуванням оцінених у фільтрі Калмана похибок: 

, , , ,
T

X P X         ,  

де  , ,
T

N h EP X X X      - вектор похибок визначення положення; 

V  - вектор похибок визначення швидкостей;  , ,N h E      - вектор ма-

лих кутів похибок орієнтації навігаційного базису ;   - зсув нулів дат-

чиків кутової швидкості;   - зсув нулів акселерометрів.  

 ; ; cos ;N h EX R X h X R            
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де З ;R R h   ЗR  - радіус Землі; ,   - похибки географічної широти та 

довготи;  - висота; h  - похибка у визначенні висоти  

Для підвищення чисельної стійкості було використано фільтр Кал-

мана у модифікації Карлсона [1, 3, 10]. Основною ідеєю модифікації є ви-

користання матриці kS , такої, що коваріаційна матриця у алгоритмі фільт-

ра Калмана виражається через kS  наступним чином: 
T

k k kP S S ; 

kS  - верхньотрикутна матриця, отримується за допомогою зворотної про-

цедури Холецького [1].  

Вектор спостереження Y  для фільтра Калмана формується у «Блоці 

формування вектора спостереження» (рис. 1) із використанням координат, 

швидкостей і параметрів орієнтації, обчислених у БІНС та виміряних СНС. 

Інваріантна схема фільтру Калмана зі зворотними зв’язками передбачає 

введення поправок у рівняння роботи БІНС із використанням векторів по-

хибок, оцінених фільтром Калмана. Одночасно відповідні вектори похибок 

прирівнюються до нуля. Введення поправок організовано у «Блоці форму-

вання зворотних зв’язків» (рис. 1) наступним чином:  

 похибки координат та швидкостей компенсуються із періодом 1N ; 

 похибки орієнтації компенсуються sз періодом 2N ; 

 зміщення нулів інерціальних датчиків  компенсуються із періодом 3N . 

Напівнатурне моделювання 

Робота інтегрованої БІНС була промодельована на комп’ютері із ви-

користанням запису експериментальних даних інерціального модуля – ку-

тові швидкості та уявне прискорення і модуля СНС – географічні коорди-

нати та швидкість у проекції на осі географічного супроводжуючого трьо-

хгранника (ГСТ). Дані показів кутової орієнтації із СНС було синтезовано 

на основі наявних експериментальних даних. 

Для проведення експерименту був використаний інерціальний мо-

дуль тактичного рівня точності та СНС за наступними характеристиками: 

зміщення нуля акселерометра - 0,001 ; зміщення нуля датчика кутової 

швидкості - 10 год ; частота видачі інформації від інерціальних датчи-

ків - 50 Гц; похибка визначення координат СНС  1  – 1 м; похибка ви-

значення швидкостей СНС  1  – 0,1 м/с; частота видачі інформації від 

СНС – 10 Гц. 

Сценарій експерименту складається із трьох етапів: 

 Ініціалізація системи. 

Ініціалізація здійснюється у нерухомому стані. У цьому режимі запу-

скаються інерціальний модуль та приймач СНС, які переходять у ро-
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бочий режим. Також виконується калібрування зміщень нулів датчи-

ків кутової швидкості. 

 Запис показів інерціального модуля та модуля СНС у нерухомому стані 

упродовж 100 с. 

Цей етап передбачає збір даних у статичному режимі з метою їх по-

дальшого використання для початкової виставки БІНС. 

 Запис показів інерціального модуля та модуля СНС під час руху 

наземної платформи упродовж 600 с. 

Під час третього етапу проводився запис показів інерціального мо-

дуля та СНС під час руху замкненою траєкторією загальною довжи-

ною 5334 м. Перепад висот на маршруті становив 28,6 м. Під час ру-

ху маршрутом середня швидкість складала 8,89 м/с, максимальна 

швидкість – 15,8 м/с. Максимальне прискорення - 1 м/с
2
. Максима-

льна кутова швидкість обертання відносно вертикальної 

осі - 0,009 рад/с. 

Перед початком роботи інтегрованої БІНС проводилася її початкова 

виставка в нерухомому стані. Подальша робота БІНС полягає у обчисленні 

навігаційних параметрів наземної мобільної платформи на основі інтегру-

вання показань інерціальних датчиків і отриманні як високочастотної час-

тини, так і низькочастотної частини навігаційної задачі. 

Інтервали вводу у БІНС поправок, оцінених фільтром Калмана, у 

«Блоці формування зворотних зав’язків» (рис. 1) були вибрані такі: 

1 2 310 с, 150 с, 250 с.N N N     

Якість роботи інтегрованої БІНС будемо оцінювати аналізуючи на-

ростання похибок БІНС між інтервалами введення поправок від фільтра 

Калмана. Для цього будемо оцінювати різниці між показами БІНС та СНС: 
БІНС СНС ,R R R       

де  , , .
T

N ER R h R     

 

 

0 З

0 З

;

.

N

E

R R

R R

   

    
 (1) 

де 0 0,   - широта да довгота у початковий момент часу 0 0t  ; 

,   - широта та довгота у поточний момент часу.  

БІНС СНС .V V V     

Для кількісної оцінки роботи інтегрованої БІНС та порівняння варіа-

нтів комплексування використовуються метрики AE (абсолютна похибка) 

та RMSE (середньоквадратичне відхилення):  

 БІНС СНСmax ;AE x x    
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 
2

,БІНС ,СНС

1

1 n

i i

i

RMSE x x
n 

 
  

 
 .  

Абсолютна похибка (AE) — це максимальне значення похибки у ви-

значенні координати або швидкості, зафіксоване протягом усього часу мо-

делювання.Середньоквадратичне відхилення (RMSE) характеризує серед-

ній рівень відхилень похибок координати або швидкості від нульового 

значення протягом усього періоду моделювання. Менше значення RMSE 

свідчить про вищу точність позиціонування. 

Моделювання проводилося для чотирьох способів інтеграції: пози-

ційного, позиційно-швидкісного, позиційно-кутового та позиційно-

швидкісно-кутового. У кожному випадку використовувалися одні й ті самі 

дані інерціального модуля та модуля СНС, отримані під час експерименту. 

Це забезпечує однакові умови функціонування та дає змогу коректно порі-

внювати результати.  

Похибки визначення координат та швидкостей для способу позицій-

ної корекції наведено у табл. 1.  

Таблиця 1. 

Похибки визначення координат та швидкостей 

 , мNR  , мER  , мh  , м cNV  , м cEV  , м chV  

RMSE 0,8885 1,5129 0,5859 0,1948 0,2108 0,4724 

AE 4,0056 7,1523 4,7097 0,8815 1,0633 1,9238 

Максимальна похибка у визначення координат при використанні по-

зиційної корекції спостерігалася у визначенні східної координати:        

AE = 7,1523 м, RMSE = 1,5129 м. Найбільшу похибку у визначенні швидко-

сті зафіксовано у вертикальному (висотному) каналі: AE = 1,9238 м/с, 

RMSE = 1,0633 м/с. Це може свідчити про тенденцію до зростання похибки 

визначення висоти за часом. 

Похибки визначення координат та швидкостей для способу позицій-

но-швидкісної корекції наведено у табл. 2.  

Для способу позиційно-швидкісної корекції найбільша похибка у ви-

значенні координат і швидкості спостерігалася у каналі висоти. Помилки у 

визначенні координат становили: AE = 9,9465 м, RMSE = 2,32777 м. Поми-

лки у визначенні швидкості: AE = 1,7437 м/с, RMSE = 0,3912 м/с. 

Таблиця 2. 

Похибки визначення координат та швидкостей 

 , мNR  , мER  , мh  , м cNV  , м cEV  , м chV  

RMSE 1,0038 1,4986 2,3278 0,2318 0,2186 0,3912 

AE 4,387 7,6632 9,9465 0,9145 1,3544 1,7437 
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Похибки визначення координат та швидкостей для способу позиційно-

швидкісно-кутової корекції наведено у табл. 3.  

Таблиця 3. 

Похибки визначення координат та швидкостей 

 , мNR  , мER  , мh  , м cNV  , м cEV  , м chV  

RMSE 0,88203 1,42956 2,32444 0,1945 0,2117 0,3911 

AE 3,9891 7,245 9,9481 0,9050 1,1824 1,7491 

Найбільші похибки у визначенні як координат, так і швидкості у разі 

використання позиційно-швидкісно-кутової корекції були зафіксовані у 

каналі висоти. Похибки у визначенні координати: AE = 9,9481 м, 

RMSE = 2,32444 м. Похибки у визначенні швидкості: AE = 1,7491 м/с, 

RMSE = 2,32444 м/с. 

Похибки визначення координат та швидкостей для способу позицій-

но-кутової корекції наведено у табл. 4.  

Таблиця 4. 

Похибки визначення координат та швидкостей 

 , мNR  , мER  , мh  , м cNV  , м cEV  , м chV  

RMSE 0,90809 1,8259 0,58456 0,1976 0,249 0,4724 

AE 4,9655 9,2479 4,6518 0,9614 1,0378 1,9306 

Для цього способу інтегрування найбільші похибки спостерігалися у 

визначенні східної координати: AE = 9,2479 м, RMSE = 1,8259 м. У визна-

ченні швидкості найбільші похибки спостерігалися у визначенні висоти: 

AE = 1,9306 м/с, RMSE = 0,4724 м/с 

За результатами моделювання, оцінюючи похибки визначення коор-

динат і швидкостей по трьом осям, варіанти корекції можна розподілити у 

порядку спадання точності наступним чином: позиційна, позиційно-

швидкісно-кутова, позиційно-кутова, позиційно-швидкісна.  

Нижча точність визначення координат та швидкостей при викорис-

танні позиційно-швидкісної корекції порівняно із варіантом позиційної ко-

рекції може бути спричинена наявністю відрізків руху із малою швидкістю 

 20,1м с  . За таких значеннях швидкості руху виробником приймача 

СНС не гарантується точність її визначення. 

Висновок 

Експериментальна оцінка точності визначення навігаційних параме-

трів інтегрованою БІНС, реалізованою на основі інерціального модуля так-

тичного рівня точності та СНС-приймача (похибка визначення координат 

 1  – 1 м, швидкості  1  – 0,1 м/с, частота – 10 Гц), виконана для чоти-
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рьох способів інтеграції за слабо зв’язаною схемою: позиційного, позицій-

но-швидкісного, позиційно-кутового та позиційно-швидкісно-кутового. За 

сценарієм застосування на низькоманевреній наземній мобільній платфор-

мі найкращу точність показав позиційний спосіб інтегрування, для якого 

отримано наступні значення похибки визначення координат AE = 7,1523 м 

та RMSE = 1,51 м. 
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