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MECHANICAL SYSTEMS OSCILLATIONS WITH HYSTERESIS
ENERGY DISSIPATION

Ua VY po6oTi, mix yac po3riisAay 3aBlIaHb MPO KOJWBAHHSI MEXaHIYHUX CHCTEM 13
ypaxyBaHHIM AHMCHUIIAI] eHeprii B marepiaii, nepeadadaeTses, MO Yy MEeXaHiuHiH
KOJIMBAJIbHINM CHCTEMI € TICTEPEe3UCHI BTPaTH, sIKi 00YMOBIICHI NPY>KHUMHU HEJIOCKO-
HAJIOCTSAMHU Martepiany. Y peallbHO ICHYIOUOi y BCIX Marepiaiax 3aJeKHOCTI MiXK
HaMpyXeHHSIM Ta Ae(opMalli€ro CriocTepiraeTbesl AesKe BIIXUICHHS Bif JIHIHHOTO
3akonHy. [Ipu oMy mpy’KHA HETOCKOHATICTh MPOSBISIETHCS Yy BUTIISL METII TicTe-
pesuca, miomia Kol XapakTepu3ye 3/IaTHICTh Marepiaay MOTJIMHATH €HEPrito MpH
MEXaHIYHUX KOJIMBAaHHSX. Y CTATTi MPOAHATI30BaHO BIUIUB TiCTEPE3UCHOTO TEPTS
MEXaHIYHUX CUCTeM No0nu3y pe3oHaHCy. OcoOIMBO BAXKJIMBUM € y3arajlbHEHHS
JAHOTO MIIXO0y Ha peabHi KOHCTPYKIIi 3 OUTBIIMM CTYNEHEM BUTBHOCTI. Y poOoTi
OTpUMaH| aHaJITHYHI 3aJEKHOCTI, 110 3B'A3YIOTh HaNpyKeHHS Ta Aedopmarii 3
ypaxyBaHHSIM TiCTEPE3WCHOTO PO3CiroBaHHs eHeprii. [[yisi BU3HAUYCHHS JUHAMIYHUX
XapaKTEPUCTHK MEXaHIYHUX CHUCTEM BUKOPUCTOBYBABCS MiJXiJ i3 3aCTOCYBaHHSM
BapianiiHO-CITKOBUX MeTOiB MoOya0BH (hyHKIIOHANIB TUIy Penest 3 momanbmio
iX MiHIMI3al1li€}0 METOIaMU HENiHIHHOTO MPOrpaMyBaHHs.

En In the work, when considering problems of mechanical systems oscillations, tak-
ing into account the dissipation of energy in the material, it is assumed that there are
hysteresis losses in the mechanical oscillating system, which is caused by elastic
imperfections of the material. In the relationship between stress and strain, which
actually exists in all materials, there is some deviation from the linear law. In this
case, the elastic imperfection manifests itself in the form of a hysteresis loop, the
area of which characterises the ability of the material to absorb energy during me-
chanical vibrations. The article analyses the influence of hysteresis friction of me-
chanical systems close to resonance. Of particular importance is the generalisation
of this approach to real structures with a larger degree of freedom. The work obtains
analytical relationships linking stresses and strains taking into account hysteresis
energy dissipation. To determine the dynamic properties of mechanical systems, a
variational grid approach has been used to construct Rayleigh-type functionals and
then minimize them using non-linear programming methods.
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Introduction

Currently, the study of the stress-strain state of mechanical systems for
vibration resistance is an urgent task [1 — 3]. The calculation of structures for vi-
bration resistance should be understood as the process of analyzing the stability
of a structure against dynamic loads and vibrations that may lead to fatigue fail-
ure or reduced performance. In addition, vibration is an important factor that
must be taken into account in the design of mechanical systems.

Vibration control helps to improve the reliability, safety and comfort of
operation of aircraft and other mechanical structures. The works of the authors
[4 - 7] are devoted to the study of vibrations, including those under the influence
of aerodynamic loading. Vibrations taking into account the imperfect elasticity
of the real material are of great interest in the study of the dynamic behavior of
mechanical systems. In [8], the problems of hysteretic energy dissipation in wire
ropes are considered.

One of the current areas of development is the use of layered composites,
which are increasingly being used in aerospace engineering, automotive engi-
neering and transport engineering [9].

The use of composites provides a high level of strength properties, impact
toughness, and high damping properties, due to their ability to dissipate elastic
vibration energy. Solving this problem for complex structures in aircraft manu-
facturing, ship and building construction is impossible without the use of numer-
ical calculation methods [9, 10].

Resonant vibrations taking into account the imperfect elasticity of the real
material are of great interest in the study of the dynamic behavior of mechanical
systems, the research methodology of which is the subject of this work.

Statement and solution of the problem

The linearized equation of a hysteretic body under simple cyclic defor-
mation has the form [11]:

G; =3K-L+p,1)-€-5; +2G- (L +35,1)-(§; —€- ;) (1)

Where the elastic and hysteresis constants are related respectively by the
relations:

E E 3K - 2G
Keoe=ori G=prol = (2)
3-(1-2u) 2. (1+p) 3-BK+G)

1
0, =5 (B -(-20)+2:5 (L)), 3)
Where p,,5 are the coefficient of hysteresis deviations in the dependen-

cies between spherical and deviatoric tensors; o, is the coefficient of hysteresis
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deviation from Hooke's law under cyclic uniaxial tension-compression; K ;E ;G
are the bulk modulus of elasticity, first and second type modulus of elasticity;
Is the Poisson's ratio;

1 : :
€= 3 (€11 + € +E3): O, ; are the Kronecker symbols; I is the hysteresis

. ) 1
deviation phase shift operator En; i,j=1,2,3.

Let's look at vibrations near resonance. Since single frequency vibrations
(principal vibrations) are generated at resonance, the deformation can be consid-
ered as harmonic.

€;(t)=¢g; -cospt=g; -cosy. (4)

In equations (1), the role of the shift operator is formally replaced by the

expression
| =tgy. (5)

If the vibrations are far from resonance, the dynamic problem differs from
the static problem only by the presence of inertial forces. The deformation law
can be any, so there are no restrictions imposed by the condition (4).

As in the theory of a viscoelastic body [11], we use the correspondence
principle, according to which the relationships between constants, as well as the
equations, will have the same form as in the theory of elasticity, if by constants
we mean operators:

K=K-(l+p,1); G=G-(1+5,). (6)

Then, according to the correspondence principle, equalities (1), (2), (3)
will take the form:

_ E E 3K - 2G
Keer—— G=g—7—+) R=g——— - (8)
3-(1-2p) 2-(1+m) 3-(BK+G)
In expanded form, equation (7) can be represented as
_ I € +& |
_2G6-A-p) _ 22 33
1= € +u )
1-2 11 1-p
_ 9
— B € +¢€ ®)
_ZG'(l_M). — 33 11
2 = _ € +p _ )
1-2p 22 1-m
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— € +&
_ZG'(l_ﬁ) — 11 22
33 — _ . 8 +},l _ .

1-2p 33 1-p

Expanding the incoming operators in expression (9) into a Maclaurin se-
ries, restricting to the first two terms of the series:

p=p (L) - 20 B! ;51');

(10)
1 1 2:A+p)-B =31
1—2@‘1—2M{1+ 3 }’ (11)
T N O R ND
1—2,a_1—2,L[14 3u ' (12)

Substituting the expressions (10) - (12) into the equation (9), taking into
account the formula (2) and neglecting the products and squares of small quanti-

ties, we obtain an expression for the stress tensor of a body with linear hystere-
Sis:

(1-p)-E 1— (822 +833)+ 3.(1_u) (811+822+833)+

J— * M
P -2w) | (-2 80
3-(1-p) (2848~ &)

o (1+p)B, - | .

_ (1-n)E 1-u (833+811)+—3'(1_H) (Eu+E€y+Ey)+
(1+M)(1_2H) +(1_2.M).61.I-(2822+833+811)
3-(1-n)

1+p)-B; -1
e [P e R e )

Tolep)(1-2-p) | (1-2-p)-8, -1
" " + 3'(]}-1_H) '(2833_811_822)

(13)

E-(1+9, -1 E-(1+9,-1

G, = (1+},t1 )'812; 623:(]_?“1).823;
E-(1+9, -1

631 = (1+ Ml ) . 831 .

Equation (13) can be written in matrix form:

{o} =[E]-{e}+[E"]-1-{e}. (14)
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Here {G},{€} are column vectors of stresses and strains; Where [E ] and

[E*] — are square matrices of elastic and hysteresis constants, respectively [3].
If equality Bl = 81 IS true, we receive:

[E"]=5,-[E] (15)
The stiffness and hysteresis damping matrices for a volumetric finite ele-

ment can be found using the traditional finite element method (FEM) algorithm
as follows:

[K]=J[D]T -[E]-[D]dv;
[K*]:J[D]T [E"]-[D]av.

Where [D] Is the dependence matrix between deformations and nodal
displacements of a finite element?

The damping matrix will be proportional to the stiffness matrix if condi-
tion (15) is satisfied.

(16)

[K]=5,-[K]. (17)

The problem of resonant vibrations of mechanical systems, taking into ac-
count the imperfect elasticity of the material, can be solved using expres-
sions (14) - (17).

The main flexibility in the range of power frequencies and modes of vi-
bration lies in the increased vibratory properties of mechanical systems subject-
ed to vibratory pressures. When solving real practical problems, the matrices of
masses and rigidities are of large dimensions, which leads to computational dif-
ficulties.

This is due to the fact that the study of structures of complex configura-
tion requires a fairly fine discretisation, which increases the order of the matri-
Ces.

The method of quasi-static iterations [12] is used for the determination of
the first eigenfrequency and shape.

The functionality that needs to be minimised when the quasi-static itera-
tion method is used is as follows:

|:jUdV—m2jKdv. (18)
v v

Where U and K are the quadratic forms, which are indicated by formulas:
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_ 1 N N

U =B(c,c) =§ZZCSKCKCS : (19)
S=1 K=1

_ 1 N N

K =K(c,c) ZEZZASKCKCS . (20)
S=1 K=1

An iterative process of coordinate descent [12] is used to minimise the
functionality (18).Then the functional (19) in the vicinity of k+1 is written in the
form:

| k+1 — (BCk+1, Ck+1) _ (K(O)il))zck , Ck+1) . (21)
Where
ky2 B(Cklck) .
(") :m, (22)
F* = (0*)?(Kc",e). (23)
Then the functional (18) in k+1 nearby is written as:
1 = (B +y e, ¢ + 718 ) [0 (K", ¢ +7)) . (24)

Or after having transformed:
I = (B¢, c*) + ZY!Hl(BCk’ei) + (Y!Hl)z(Bei'ei) -

—[(D(k)]z(KCk , Ck) _ !<+1[O)(k)]2(KCk , e.)
Y i

(25)

The increment of the k+1 approximating functional is given by the fol-
lowing equation:

AT = 27F4(Be ) + ()2 (Be, &) — v [ (Ke* ). (26)

The step size is determined from the condition of the maximum rate of
decrease Al**

5A| k+1
Then
2(Bc* ) +2v1(Be,, ) ~ [ (Kc*, ) =0. (28)

Hence, the step size is determined by the ratio
i 2(Bc* &) — [T (Kc" &)
2(Be; e) |
Thus, the iterative process is simplified and the final formula for deter-
mining the step has the same structure as for the static problem. To determine
the spectrum of eigenfrequencies and modes, it is proposed to use the stiffness

increase method, which is based on the use of the minimax properties of the
Rayleigh-Ritz functional [9].

(29)
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When using the stiffness enhancement method for the determination of
2nd and higher eigenfrequencies and eigenmodes, it is necessary to solve the
problem of minimisation of the Rayleigh-type functional:

U 1-1 N alf:)
|(6)6€RN _ (U) +CZK (E))Zl =1 0z; . (30)

The coordinate descent method is also used to minimise the function (30).
The stiffness enhancement method is the most efficient and economical method
in terms of computational resources compared to the traditional method, where
each subsequent shape and frequency is found by minimising on a subspace or-
thogonal to all previously found eigenvectors. It should be emphasised that the
stiffness enhancement method allows the determination of the required number
of eigenfrequencies and modes, including multiples, which is important when
solving the problem of forced vibrations of mechanical systems.

Conclusions

1. In this paper, the damping matrices for the resonant vibrations of mechanical
systems are presented in an analytical form.

2. The equations for the components of the stress tensor are presented, taking in-
to account the imperfect elasticity of the material under simple cyclic defor-
mation.

3. Recommendations are given for the use of the obtained damping matrices in
the solution of practical problems using a variety of methods. This will help
to avoid the difficulties associated with the creation, storage and use of global
matrices of masses and stiffnesses.
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