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Introduction

In view of constantly growing market for micromechanical angular rate 
sensors Coriolis vibratory gyroscopes (CVGs) have received significant amount 
of attention from the MEMS sensors design specialists due to the promising 
possibility to fabricate sensitive elements of such gyroscopes in miniature form 
by using modern microelectronic mass-production technologies. While 
conventional angular rate measurement is based on detection of the rotation 
induced oscillations amplitude (secondary amplitude) [1], trajectory analysis 
approaches are utilised as well [2, 3]. The latter also allows designing rate 
integrating sensors, which are more suitable for attitude and navigation 
applications [3, 4]. This paper addresses problems related to modelling angle of 
the sensitive element motion trajectory rotation due to the presence of the 
external angular rate.

Problem formulation

It is well known that in general case motion trajectory of the CVG 
sensitive element is an ellipse. Angle of the trajectory rotation in steady state is 
proportional to the angular rate. Major goal of this paper is to study dynamics of 
the sensitive element motion trajectory due to the external angular rate, and to 
develop its transient process mathematical model. Obtained model can be later 
used to improve performances of the Coriolis based angular rate sensors.

Sensitive element motion trajectory

One could consider the CVG sensitive element as a two-dimensional 
pendulum, whose steady state trajectory forms a rotated ellipse, as shown in 
Fig. 1. In this figure, a and b are the big and small half-axes of the ellipse,  is 
the angle of the ellipse rotation relatively to the axes of primary x1 and 
secondary x2 oscillations. It is well-known, that these parameters (namely half-
axes and angle of rotation) depend on amplitudes and phases of primary and 
secondary oscillations, which in turn depend on parameters of the sensitive 
element design and unknown angular rate. The problem, which is to be 
addressed in this paper, is to develop and analyse mathematical model of the 
angle transient processes due to the angular rate.
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Fig. 1. Sensitive element motion trajectory

In general case, angle of the trajectory rotation is given by the following 
expression [2]:

1 1 2
2 2

1 2

1 2 cos
tg

2

A A

A A
  

    
. (1)

Here 1A  and 2A  are the primary and secondary amplitudes of the sensitive 
element oscillations,  is the phase shift between the primary and secondary 
oscillations. In order to calculate these amplitudes as functions of the angular 
rate, let us analyse dynamics of the CVS sensitive element.

Sensitive element dynamics

In the most generalized form, motion equations of the CVG sensitive 
element both with translational and rotational motion could be represented in the 
following form [1]:
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Here 1x  and 2x  are the generalized coordinates that describe primary (excited) 
and secondary (sensed) motions of the sensitive element respectively, 1k  and 2k
are the corresponding natural frequencies, 1  and 2  are the dimensionless 
relative damping coefficients,   is the measured angular rate, which is 
orthogonal to the axes of primary and secondary motions, 1q  and 2q  are the 
generalized accelerations due to the external forces acting on the sensitive 
element. The remaining dimensionless coefficients are different for the sensitive 
elements exploiting either translational or rotational motion. For the translational 



sensitive element they are 121  dd ,  2123 mmmd  ,  2121 2 mmmg  , 
22 g , where were 1m  and 2m  are the masses of the outer frame and the 

internal massive element.
Steady state solution of the equations (2) in terms of amplitudes and 

phases of primary and secondary oscillations can be represented as follows:

22
1

222

10
1

4)1( 


k

q
A ,







)21(2 2
2

2224

21
2

kk

gA
A ,





1

2
arctan 1

1 ,

)(2)(2

)41(
tan

21
3

12

422
21

2
1

2
kkk

kkk




  .

(3)

Here 10q  is the amplitude of accelerations created by the primary excitation 

system, k is the primary natural frequency, k/  is the relative excitation 
frequency, 12 / kkk   is the ratio of the secondary and primary natural 

frequencies, k/ is the relative angular rate. Angular rate is assumed to 
be negligible in comparison to the natural frequencies.

One should note that the sensitive element trajectory parameters depend 
on the phase shift 12   between primary and secondary phases. Most 
importantly, based upon (3), phases of do not depend on angular rate. In case of 
the primary resonance ( 1 ), cosine of this phase shift can be calculated as
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Expressions (3) along with the phase shift representations (4) can now be used 
to analyse parameters of the actual trajectory of the CVG sensitive element. 
However, dependencies (3) and (4) are the steady state solutions, which do not 
allow studying transient processes when external angular rate is applied.

Trajectory rotation angle

As has been demonstrated in [5], Laplace transformation of the secondary 
amplitude with respect to settled primary oscillations is
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Using expressions (3-5) we can modify expression (1) to the following form
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Apparently expression (6) is non-linear in terms of the input angular rate. 
However, taking into account that relative angular rate is small ( 1 ), 
expression (6) can be linearised with respect to the small   as follows:
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Finally, assuming matching natural frequencies of primary and secondary 
oscillations ( 1k ), expression (7) can be further simplified to
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Steady state of the obtained expression (8) is in perfect agreement with the 
previously published steady state expressions for the motion trajectory angle of 
rotation [2].

Corresponding to (7) and (8) transfer functions from the relative angular 
rate to the trajectory rotation angle are as follows:
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Transfer functions (9) can now be used to synthesise systems to control sensitive 
element motion trajectory as well as to implement advanced methods of the 
angular rate measurements.

Numerical simulations

Numerical simulation of the sensitive element motion trajectory based on 
the equations (2) is shown in Fig. 2.



Fig. 2. CVG sensitive element motion trajectory

Primary oscillations are assumed to be already settled and constant 
angular rate is applied. Corresponding simulations for the angle of trajectory 
rotation are shown in Fig. 3.

Here dashed line corresponds to the simplified approximation (8). One 
can see that significant steady state error is present, which reduced usability of 
the derived simplified model (8).

Fig. 3. Transient process simulations
(solid – accurately simulated, dashed –



simplified approximation,dotted – improved 
approximation)

Improved transient process representation

Analysing expression (8) one can see than in steady state (s = 0) value of 
the θ angle is given by the simple ratio 2/2g . From the numerical simulation in 
Fig. 3 (dashed line) it is apparent that this value is not sufficiently accurate, 
while dynamic part appears to be acceptable. More accurate steady state value 
can be obtained directly from the expression (6), which results in the following 
improved approximation:
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Numerical simulations of the improved approximation (10) are represented by 
the dotted line in Fig. 3. One can see that improved approximation (10) is 
accurate in representation of the angle of trajectory rotation transient processes 
for most of the practical applications.

Conclusions

Developed model for the angle of trajectory rotation of a CVG sensitive
element allow designing miniature angular rate sensors based on the trajectory 
analysis contrary to the conventional secondary amplitude detection. Derived 
transfer functions can be used to develop filtering and control systems that will 
improve its measurement performances. The latter is suggested as a topic for the 
future research.
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