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VECTOR METHODS FOR DETERMINATION OF RIGID BODY
ORIENTATION

Ua POBFJ‘IHH}"TO BeKTopHi METO/I BU3HAYCHHS opieHTAaIll TBEP/IOro Tijla S3 BUKO-
pucTaHHAM iH(pOpMaIlii IPo BEKTOPU B OMOPHIN Ta MOB’sI3aHiil 13 TIIOM crcTeMax
KoopauHaT. B oCHOBY aHamii3y MOKJIaJeHO METOJ HaMEHIIHUX KBaJpaTiB y Bek-
TOPHO-MaTpU4Hii (opmi. Takuii MiaXix JO3BONSIE 13 €AMHUX MMO3UIINA POTIITHYTH
3aCTOCYBAaHHSA PI3HUX METO/IB PO3B'A3aHHS 33/1a4i: MAaTPUYHOTO (3 BUKOPUCTAHHAM
MaTpUIll HANpSMHUX KOCHHYCIB), T€OMETPUYHOTO (i3 BUKOPHUCTAaHHAM BEKTOpa
['i60ca), kBaTepHiOHHOTO (13 BUKOPUCTAHHSIM KBaTepHiOHY OoBOpOTY). [IpoBeneHo
YHCENbHY OI[IHKY TOYHOCTI BOCBMHU QJITOPUTMIB BU3HAYCHHS OpI€HTAIlli, OTpUMa-
HUX HAa OCHOBI JIaHUX METOIB.

En Vector methods for determining the orientation of a rigid body using infor-
mation about vectors in the reference and body-related coordinate systems are con-
sidered. The analysis is based on the least squares method in vector-matrix form.
This approach allows us to consider the application of different methods of solving
the problem from a single standpoint: matrix (using the directional cosine matrix),
geometric (using the Gibbs vector), quaternion (using the quaternion of rotation).
Numerical evaluation of the accuracy of eight orientation determination algorithms
obtained on the basis of these methods was performed.

Introduction

Methods for determining orientation by measuring vectors in the reference
body-related coordinate systems have found wide application where the use of
gyroscopic sensors for a long time is impossible. Here, first of all, it is necessary
to note the problem of determining the orientation of satellites. As meters are
used sun sensors, Earth sensors, magnetometers, star sensors.

From a mathematical point of view, the least squares method is common
to most methods, which allows to take into account the possible measurement
errors. The approach proposed by Wahba's problem [1], according to which the
matrix of guiding cosines is sought by comparing measured and calculated vec-
tors, proved to be particularly effective. This approach is used in most cases
when solving the problem of determining orientation.

Most of the purpose of the analysis is to obtain optimal estimates of the
directional cosine matrix [2 - 3] and quaternions [4 - 5], which in this paper are
also considered and compared in terms of accuracy of orientation.
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Problem statement

The purpose of the analysis is to generalize and compare the algorithms
for determining the orientation of a rigid body based on the measurement of vec-
tors.

Problem solution

1. Matrix method of problem solution

The problem of determining the orientation of the body is considered as
the problem of finding the directional cosine matrix R of the transition from the
reference coordinate system to the body-related coordinate system, using infor-
mation about the projections of vectors in these coordinate systems [6 - 10].

This problem is solved by minimizing the loss function

1S - on 1<
g(R) = Ezui “ai —-Ra, “2 - EZ”al - RaoiHZ ’ (1)
i=1 i=1

where §;, éoi— vectors in the body-related and in the reference coordinate sys-

‘ o

tems; q; = Ay = ; -\/_a,, a,; =+l @, M — weights; N — number
fal Hao.H

of vectors.
The loss function is complemented by a requirement for orthogonality of
the matrix R and is written in the form

_ RN T 1 T
g(R)_EiZﬂ:tr[(Mi—RMO)(Mi—RMO) ]+§tr[A(R R-1)], )
where M; =[a1 a, ...an]; M, [ao1 agy . ] A — Lagrange multiplier.

The optimal matrix R that is sought from the condition 2—g:0 has the

form
-1

R=Q(JQQ) . ©
where Q= MM .

We will call this solution “Algorithm Nel”. Note that if the matrices are
formed on the basis of two vectors in accordance with the TRIAD algorithm,

then formula (3) is simplified to the form R= MMI :
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2. Geometric method of problem solution

Specify vectors b= a—a, that characterize displacements of the ends of

the vectors (Fig. 1). This vector is situated in the plane of the noted circle and is
perpendicular to the axis of rotation.

Fig. 1. Vectors

Fig. 1 shows the angle of rotation of the body o, the axis of rotation of the
body and the unit vector € of this axis.

Specify the vectors U =a+4d,. There is a relation [11]
b=gxd. (4)
where U=da+da,; §= étg% — Gibbs vector.

Rewrite the formula (4) in the matrix form

b=-Ug (i=1+n), 5)
0 -u, u,
where U=| u, 0 —u, |.
—u, u, 0
Determine the vector g minimizing function
=22 |b+Uigl” ©
i=1
Using dependency ?—g =0, we find
g=-Gk, (7)

n T n T
Where k=ZUi bi’ G:ZUiUi'
i=1 i=1
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Next are the unit rotation vector and the rotation angle of the body (algo-
rithm Ne 2)

e:m; o =2arctg(||g). (8)

The disadvantage of this algorithm is that it cannot be used for o =180°.

3. Quaternion method of problem solution
3.1. General quaternion solution of the problem
If we put the matrix R in accordance with the quaternion of rotation ¢,
we will have the following dependence
a=(qe a°Q, 9)
where (- conjugate quaternion.
Rewrite formula (9) as follows

qoa=a,°q (10)
Formula (10) can be written in matrix form [12, 13]
Vg =V,0,, (11)
where
o _aT 0 _al 0 -a, a 0 —a, ay
V = Vo= D=l a, 0 —-a,|; D,=| a,, 0 —ay
a b % Do -a, a, 0 —8y 8o O
This expression can be written as follows
WQ =04, (12)
0 —-u, u
0 —-a' _ oY
where W =V, -V = U=ju, 0 -u,|
a U
-u, u, 0

For n vectors, you can write the following
Taking into account the errors of measuring vectors, we will solve the

problem on the basis of the least squares approach, the essence of which is that
we will look for the quaternion g from the condition of minimizing the loss

function

l(q)%é(wiq)z =%qTGq, (13)
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L 0o Al H2 al U,
i=1 i=1 i-1l Ula, —U?
Consider the condition that the quaternion ¢ must be normalized and take
the following loss function 1(q):

I(q)=%qTGq—k(qTq—1), (14)

where A — Lagrange multiplier.

ol
From the condition % =Ggq-rq=0,, we find
Gq=1q. (15)
Then you can write

1 1 1
I(q)=5qTGq=5quq=§%- (16)

This means that we are interested in the minimum value of the parame-
ter 4. Thus, the problem of finding a quaternion q is equivalent to finding the

eigenvector (quaternion) of the matrix G, which corresponds to the minimum
value of the eigenvalue A (algorithm Ne3). In the Matlab environment, it is con-
venient to use the “eig” function .

3.2. Using the Gibbs vector

Let's look at other options for solving the problem in which this function
IS not used.

Writing the quaternion as a vector ¢ =[q, qJ], expression (15) can be

written as
T
HINEN
Z H ||q Qv

n 2 n T~ n 2
where H=-Y U7 Z=YU; &; b=>|a".
i=1 i=1 i=1
The system (17) can be written as follows
b+2Z'q, =\q,;
Qo Q, =AM, (18)
q,Z + Hg, =Aq,.

Similarly to [5], consider the second equation of this system. Let's rewrite
it in the form

(M-H)Y =2
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where Y = g—" — Gibbs vector.
0
That is,

Y=(M-H)"Z. (19)

If you put 4 = A4,,;,, you can find the vector Y, and then find the quaterni-
on q (algorithm Ne4)

1 1 }
9=+ |
) /1+ Y[ {Y (20)

3.3. Solutions of the problem in quaternions
The eigenvalues of the matrix G are the roots of the characteristic equa-
tion
A +eAl+c A +ch+c, =0, (21)
where [14]
o=-T; ¢,=—(¢1, +T,); c;=—(c,T; +cT,+T,);
c,=detG; T, =trG; T,=trG?*; T, =trG°.
A similar equation obtain for the matrix Hg, 4
A +ceA +eh+e, =0, (22)

where in the expressions for the coefficients the matrix G must be replaced by a
matrix H .

According to the Hamilton-Kelly theorem, each matrix corresponds to its
characteristic equation, i.e. we can write

H3+qH% +¢,H +¢;=0. (23)
Let us represent the expression (H — Al )_1as follows
(H=a1) =y (a+BH +H?). (24)
Here we find
H?+(B—A)H?+(a—Pr)H —(y+0n) =0. (25)

Equating in expressions (23) and (25) the coefficients at the same powers
of H , we obtain

B=c, +A a=c,+PA, y=—(c; +0ah). (26)
Then you can write
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Y=L/y, (27)

where L=—(al +BH +H?)Z.
Thus

_ 1 Y
R .

It is significant that in expression (28) the Gibbs vector is absent (algo-
rithm Ne5). This algorithm is similar to the QUEST algorithm [5].

3.4. Simplified solutions of the problem in quaternions

Given that A, =0 , the minimal eigenvalue can be found from the sim-
plified characteristic equation A (algorithm Ne 6)

A=Ch . +C, =0.

Then

min

7\‘min N (29)

Taking into account that A, ~0, you can reduce the amount of calcula-
tions by taking into account the calculations A_.. =0, That is, for practical cal-
culations can be taken A . =0. In this case

al +BH +H*=yH™

that is, L=—yH'Z.
In this case (algorithm Ne 7),

1 [1
9=— _ |
J1+|X[ {X} (30)

n -1y
where X =—H™Z =[zuiui j SUla;.
i=1 i=1
Let us numerically estimate the accuracy of the algorithms for various ori-
entation angles and vector values in the reference coordinate system. Let us as-
sume n=2 and write the measured vectors in the form
a = E;Ra, a, = E,Ra,,, where the matrices

0,990 0 1,010 0
E=| 01 0 E= 010
0 0101 0 0 0,99
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set the measurement errors of the vectors. The weight coefficients are assumed

to be unit.

Vector measurement errors (in degrees) are given in Table 1.

Vector measurement errors

Table 1.

IN‘-’ y =45",0=20", ¢ =-10) =-10°,y =30",y =109=1~0°,w=30°,w=T—10°
o 8, =[1 0 10T an =l -2 17 an=[l-2-1]
& =[9 1 0T G =[41 2] T =41 20
1 A, =-0,17549 A, = 057767 A, = 0,28006
Ay =-0,27951 Ay=— 0,22937 Ay =-0,10123
A, = 0,11605 A,= 0,70444 A, =-0,057046
2 A, =-0,18605 A, = 05621 A, = 0,030302
A, = —0,30568 Ay=-0,23186 Ay=-10,027703
A,=0,092515 A,=0,71836 A,=-0,14501
3 A, =-0,18604 A, = 05621 A, = 0,030435
A, = —0,30568 Ay=-10,23186 Ay=-0,027044
A,=0,092514 A,= 0,71836 A, =-0,14556
4 A, =-0,18604 A, = 05621 A, = 0,030435
Ay = —0,30568 Ay=-0,23186 Ay=-0,027044
A,=0,092514 A, =0,71836 A, =—0,14556
5 A, =-0,18604 A, = 05621 A, = 0,030435
A, =-0,30568 Ay=-0,23186 Ay=-0,027044
A,= 0,092514 A,= 0,71836 A,=-0,14556
6 A, =-0,18604 A, = 05621 A, = 0,030447
A, =-0,30568 A, =-0,23186 Ay=-0,026983
A,=0,092514 A, =0,71836 A,=-0,14561
7 A, =-0,18605 A, = 05621 A, =0,030302
A, =-0,30568 Ay=-0,23186 Ay=-0,027703
A,= 0,092515 A,= 0,71836 A,=-0,14501
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=10°,y =30°,y =-10°

5101 :[1 -2 _1]T
éoz :[_4 1 2]T
QUEST A, =0,099618 A, =-0,06602 A, = 0,053986
Ay=-0,55806 Ay=-0,034716 A, =—0,57994
A,=0,043499 A,= 0,2166 A,=0,18177
Conclusions

It follows from the calculations that the accuracy of the above algorithms
Is very close to each other. At the same time, the accuracy of the QUEST algo-
rithm is somewhat different from the accuracy of these algorithms, For practical
calculations in quaternion algorithms can be taken A, =0, that allows you to use

simplified algorithms. The most common quaternion algorithms is an algorithm
that is based on finding the eigenvalues and eigenvectors of the matrix G.
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