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GEOMETRICAL SCALE MULTIPLIER OF THE RING LASER GYRO 

WITH RESONATOR CONTAINING A DIELECTRIC MEDIUM 

 Як показує аналіз літератури, існує щонайменше шість якісно різних 

аналітичних виразів для геометричного масштабного множника gM  

лазерного гіроскопа з плоским N -дзеркальним резонатором, що містить 

уздовж всього периметра L  тверде діелектричне середовище з показником 

заломлення 
2/1)( rrn  . Відповідно до одного з таких виразів, параметр    

gM  обернено пропорційний величині n . У статті, – цей вираз для gM   

підтверджено. 

As analysis of the literature shows, there are at least six qualitatively different 

analytical expressions for geometrical scale multiplier gM  of the ring laser gyro 

with a planar N -mirror resonator containing along all perimeter L  a rigid 

dielectric medium with index of refraction 
2/1)( rrn  . According to one of 

these expressions, the parameter gM  is inversely proportional to quantity n . In 

the paper, – such expression for gM  is confirmed. 

Introduction 

One of the important metrological parameters of the ring laser gyro 

([1] - [6]) with a planar N -mirror resonator ( 3N ) is the so-called geometrical 

scale multiplier gM . It is the coefficient of proportionality between the angular 

velocity z , with which the gyro rotates in the inertial space about its  

sensitivity axis z


, and the difference 
12   between frequencies of 

counterpropagating in its resonator waves:  

zgM      ( zz


 ). (1) 

In these formulas, 
z  is the projection of vector of the laser gyro absolute 

angular velocity 


 onto the unit vector z


 which is orthogonal to resonator 

plane. The parameter gM  in (1) is called “geometrical” because it depends 

mainly on geometry of the laser gyro resonator. 
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If the laser gyro has an empty N -mirror resonator of arbitrary shape (with 

perimeter L  and  area A) which provides generation of radiation linearly 

polarized in the sagittal plane, then the expression for parameter gM  has well-

known and adopted by all researches form 

L

A
MM gg

0

0

8




 , (2) 

where 0  is the wavelength in vacuum related to the central of active medium 

emission line frequency 0  by the formula 00 /2  c . 

But another situation is observed in general case, when the laser gyro 

resonator is not empty and contains a rigid dielectric medium with length d  and 

index of refraction 
2/1)( rrn  , where r  and r  are the relative permittivity 

and permeability of the medium, respectively.  

In order to compare all results in this field obtained in numerous works by 

various authors, it will be convenient to consider (as in [17]) the special mutual 

case, Ld  , when the dielectric medium is located inside the laser gyro 

resonator along all perimeter L , and the active medium is concentrated only 

within a infinitely thin layer. 

Then expressions for parameter  gM  under such condition will have the 

following forms: 

 according to [2] (case 1r ), [7]–[19], and [20] (see Section IV therein),  











n
MM gg

1
0 ; (3) 

 in accordance with [20] (see Section V therein), and [21]–[22],     
2/1

0 













r

r
gg MM ; (4) 

 according to [23],    

n

n
MM gg

2

)1( 2

0


 ; (5) 

 in accordance with [4] (case 1r ) and [24], 











20

1

n
MM gg ; (6) 

 according to [25] (case 1r ), 

nMM gg 0 ; (7) 
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 and, finally, as it is mentioned in [25] about results of [26], 

0gg MM  . (8) 

It must be noted that expressions (3) – (8) for parameter gM  are 

approximate. They are obtained in a linear with respect to   ( 


) 

approximation.  

Remark: Comprehensive list of papers on this theme is presented in [17]. 

As one can see from formulas (3) – (8), there are at least six qualitatively 

different analytical expressions for geometrical scale multiplier gM  of the ring 

laser gyro with a planar N -mirror resonator containing along all perimeter L  a 

rigid dielectric medium with index of refraction 
2/1)( rrn  . 

The goal of this work is to confirm the known expressions (3) for 

parameter gM . In order to do it with a greater level of authenticity, a new 

approach to derivating the system of Maxwell’s equations in a uniformly 

rotating dielectric medium will be used. All calculations will be performed with 

accuracy approximated to first order in  . 

Derivating the system of Maxwell’s equations for electromagnetic 

field vectors E


 and B


 in a uniformly rotating dielectric medium 

Consider the inertial frame of reference }{ zyx 


 with origin in point O , 

spatial rectangular coordinates x , y , z , and time coordinate t . Radius-vector 

r 


 of a given observation point  S   in such frame is zzyyxxr 


, 

where  x 


, y


, z 


 are the unit vectors. In such inertial frame, in the absence of 

free currents and charges, the system of Maxwell’s equations in a dielectric 

medium has well-known form:  

0





t

B
E




, 

0 B


, 

)(
1

02
M

t

P

t

E

c
B 















, 

PE 





0

1
. 

(9) 

System (9) is written here in the SI units. In this system, E

  and B


 are the 

electromagnetic field vectors; P

  and M


  are the polarization and magnetization 
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vectors of a dielectric medium; )/()/()/( zzyyxx 


is the 

operator of spatial differentiation; t /  is the operator of time differentiation; 
21

00 )( c  is the speed of light in vacuum ( 0  and 0  are its permittivity 

and permeability, respectively). 

In system (9), vectors E

 , B


, P

 , M


  are related via expressions 

EP r



0)1( ,     

0

1
1
















B
M

r




. (10) 

Substituting (10) into (9) yields the standard system of Maxwell’s 

equations for electromagnetic field vectors E

  and B


 in a nonrotating dielectric 

medium: 

0





t

B
E




, 

0 B


, 

0
1
2












t

E

c

B r

r




, 

0 Er


. 

(11) 

So the main question of this section is: what form will system (11) have in 

a uniformly rotating dielectric medium? 

To answer the question, consider a uniformly rotating frame of reference 

}{ zyx


 with origin in point  O  ( OO  ), spatial rectangular coordinates x , 

y , z , and time coordinate t  ( tt  ). Radius-vector r


 of a given observation 

point  S  in such frame is zzyyxxr


 , where  x


, y


, z


 are the unit 

vectors. At initial moment  0 tt ,  the unit vectors  x


, y


, z


 of such 

rotating frame coincide with the unit vectors x

 , y


 , z 


 of the inertial one, 

radius-vector r


 of  observation point S  coincides with radius-vector  r 


 of 

point S  , and SS  .  

Let us introduce in such rotating frame the electromagnetic field vectors 

E


 and B


,  the polarization and magnetization vectors P


 and M


, the operator 

of spatial differentiation )/()/()/( zzyyxx 


, and the operator 

of time differentiation t / . We will suppose that vectors E


, B


, P


, M


 in a 

rotating frame are related (as in the inertial one) via expressions 
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EP r


0)1(  ,     

0

1
1














B
M

r




. (12) 

Let the frame of reference }{ zyx


, at initial moment 0 tt , begins to 

rotate with respect to the inertial one }{ zyx 


 with angular velocity 

zyx zyx


 . So the formulas of transformation of coordinates 

between these two frames are 

,tddt       ,tdvrdrd 


 

zvyvxvrv zyx


 , 

(13) 

or, in scalar form, 

,tddt      ,tdvxddx x
     ,tdvyddy y

     ,tdvzddz z
  (14) 

where 

,yzv zyx      ,zxv xzy      .xyv yxz   (15) 

Let us find relation between operators 


 and 


. Taking into account (14) 

and (15), with the help of formulas   

,
zx

z

yx

y

xx

x

tx

t

x 






































 

,
zy

z

yy

y

xy

x

ty

t

y 






































 

,
zz

z

yz

y

xz

x

tz

t

z 






































 

(16) 

we obtain  

,
xx 







     ,

yy 







     ,

zz 







 (17) 

so 

.


 (18) 

Let us find relation between operators t /  and t / . Taking into 

account (14) and (15), with the help of formula   

,
zt

z

yt

y

xt

x

tt

t

t 






































 (19) 

we get  
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)( 







 
v

tt
. (20) 

The frame of reference }{ zyx


rotates with respect to the inertial one 

}{ zyx 


 with angular velocity 


. So expression (20) must be supplemented 

with the term 


. As a result, 









 
)(v

tt
. (21) 

According to (21), for any given vector G


 ( BEG


, ), 

.)( GGv
t

G

t

G 











 (22) 

For subsequent calculations, it will be convenient to rewrite (22) in other, 

but equivalent form. Let us consider the following identity: 

).()()()()( vGGvGvvGGv


  (23) 

In the case rv


 , we have GvG


 )( , and 0 v


. So (23) 

may be rewritten as 

).()()( GvGvGGv


  (24) 

From (24), it follows 

).()()( GvGvGGv


  (25) 

After inserting (25) into right-hand side of (22), we get 

).()( GvGv
t

G

t

G 











 (26) 

Therefore, the thought for relation between operators t /  and t /  is 

).()( 







 
vv

tt
 (27) 

Let us write down relations between vectors E

 , B


, P

 , M


 , and vectors 

E


, B


, P


, M


. We adopt the following standard formulas of the special 

relativity theory: 

BvEE


 ,     Ev
c

BB



2

1
, (28) 
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Mv
c

PP



2

1
,     PvMM


 . (29) 

Then, taking into account (12), as a result of substituting (18), (27)–(29)  

into (9), we obtain the sought for system of Maxwell’s equations in a uniformly 

rotating dielectric medium (to first order in ):  

0)
1

(
2





 Ev

c
B

t
E


, 

0)
1

(
2

 Ev
c

B


, 

0)(
1
2













r

r

r

B
vE

tc

B






, 

0)( 



r

r

B
vE




. 

(30) 

System (30) is in agreement (in such approximation) with results of works 

[27] and [19].  

System of wave equations for electromagnetic field vectors E


 and B


 
in a uniformly rotating dielectric medium 

Let us rewrite system of Maxwell’s equations (30) in other, but equivalent 

form: 

0)
1

(
2





 Ev

c
B

t
E


, 

0)
1

(
2

 Ev
c

B


, 

0)(
1 2

2





 BvEn

tc
B


, 

0)
1

(
2

 Bv
n

E


. 

(31) 

Then the system of wave equations for electromagnetic field vectors E


 
and B


 in a uniformly rotating dielectric medium may be obtained directly from 

the system of Maxwell’s equations (31). According to results of the author’s 

work [28] [see relations (69) and (70) therein], such system (in a linear with 

respect to    approximation) has the following form: 

,0)(
2

])[(
2

222

2

2

2
2 









 B

n
EEv

tct

E

c

n
E





 (32) 
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.0)(
2

])[(
2

222

2

2

2
2 









 E

c
BBv

tct

B

c

n
B





 

Simplified wave equation for transversal components of vectors E


 
and B


. Its analytical solutions 

Consider the ring laser gyro with a planar N -mirror resonator of arbitrary 

shape (with perimeter L  and area A) which contains along all perimeter a rigid 

dielectric medium with index of refraction 
2/1)( rrn   (the active medium is 

concentrated only within a infinitely thin layer). In our subsequent calculations, 

after taking into account Stokes' theorem, it will be convenient to use cylindrical 

coordinates ( ,  , z ) and consider such gyro as if it has an equivalent circular 

resonator of effective radius LA /2 .  

The laser gyro is in rest in a uniformly rotating frame of reference 

}{ zyx


: its resonator plane coincides with the plane }{ yx


 of  a rotating frame, 

and its sensitivity axis (which is orthogonal to the resonator plane) coincides 

with the unit vector z


 of a rotating frame. The device rotates in the inertial 

space about its sensitivity axis z


 with angular velocity 
z , i.e., zz


 .  

The laser gyro resonator provides generation of radiation linearly 

polarized in the sagittal plane, i.e., vectors E


 and z


 are parallel. The gyro 

operates at central (of He-Ne active medium emission line) frequency 0  

(wavelength in vacuum 00 /2  c , wavenumber in vacuum 

000 /2/  cK ). During the device operation on preselected at initial 

moment longitudinal mode with very large integer index q , the perimeter 

stabilization system of the gyro continuously provides (by adjusting parameter 

 ) the fulfilment of resonance condition  q2 , where n/0  is the 

wavelength in a dielectric medium with index of refraction n . 

For the above-mentioned laser gyro with a circular resonator of  radius 

LA /2 , vectors E


 and B


 may be presented in cylindrical coordinates in the 

form ,zEE z


   


BB , where  zE  and B  are the transversal components;  z


 

and  


 are the unit vectors.   Since we consider the simplest special case of laser 

gyro rotation about its sensitivity axis z


 when zz


 , so 


vv , where 

zv  , and 


 is the unit vector. 

Then, after introducing the more convenient for us longitudinal coordinate 

s  (  2..,,0s ), in the approximation of plane waves 

),(0 BEGzGG


 , and under simplifying condition 2  >> 0   

(see section 4 in [29]) of infinitely small curvature of a circular axis contour of 
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laser gyro resonator (which always fulfils for devices with perimeter more than 

some centimeters), – we may present the operator 


 in system of wave 

equations (32) in the form )/( s


. After that, the expressions for 

quantities E


, B


, v


, and 


 must be substituted into equations (32), and their 

projections onto directions of unit vectors z


 and 


 must be taken. As a result, 

we get: 

0
2 2

22

2

2

2

2

2
















ts

G

c

v

t

G

c

n

s

G
       (  BEG z , ). (33) 

Wave equation (33) must be solved with taking into account the boundary 

condition ),2(),( tsGtsG  , where  q2 , and n/0 . 

Method of solving equation (33) for the case of vacuum ( 1n ) is known 

from the literature (see, for example, work [20] and formulas (80)–(85) therein).  

For our case of a dielectric medium ( n  > 1), as it follows from (33), 

expressions for wave transversal components 
zE , B  may be constructed (to first 

order in ) as 

),cos()cos(),( 2010 sKtEsKtEtsE zzz   

),cos()cos(),( 2010 sKtBsKtBtsB    
(34) 

where  

,)/( 00 zEcnB       ,)/1( 01  n      ,)/1( 02  n  

,// ccv z     ,/2 LA     ,0KnK      ./2/ 000  cK  
(35) 

Expressions (34) and (35) describe in mathematical form the lows of 

propagation of transversal electromagnetic waves in a uniformly 

rotatingresonator of the laser gyro. According to (35), the difference 

12   between frequencies of counterpropagating in its resonator waves 

may be calculated by the formula zgM  , where 

nL

A
M g

0

8




  (36) 

is the geometrical scale multiplier of the gyro. As one can see, expression (36) is 

in agreement with the known relation (3) for parameter gM .  

Conclusion 

As analysis of the literature shows, there are at least six qualitatively 

different analytical expressions (3)–(8) for geometrical scale multiplier gM  of 

the ring laser gyro with a planar N -mirror resonator containing along all 

perimeter L  a rigid dielectric medium with index of refraction 
2/1)( rrn  . 



61 

П р и л а д и  т а  м е т о д и  к о н т р о л ю  

In this work, the expression (3) for parameter gM  is confirmed. In order 

to do it with a greater level of authenticity, a new approach to derivating the 

system of Maxwell’s equations in a uniformly rotating dielectric medium was 

used.  
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