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DETERMINATION OF MERIDIAN POSITION BY A TWO-STEP GROUND
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GYROCOMPASS IN EESTHETICAL ROTOR POSITIONING

[TpoTupivyust MK TOYHICTIO 1 YaCOM BH3HAYCHHS IUIOIMIMHI TeorpadiyHoro me-
puIiaHa iICTOTHO OCJIA0JIO 13 MOSBOIO aBTOMATHYHHUX TiPOKOMITACIB 1 aJlrOPUTMIiY-
HUX METOJIB 00poOKu iH(opmarrii i3 HUX. 3a3HaYeHI METOIN JTO3BOJISIFOTH PO3IIHU-
PUTH CHEKTP MOKJIMBUX PEXKHUMIB POOOTH TpOKOMIACIB, BUKOPUCTOBYIOUH B TOMY
quCcal ¥ HeTpamuliiHi. Y CTaTTi po3risgacThCsl aBTOMATUYHHUNA JBOCTYTICHEBHIA
Ha3eMHHH TipOKOMIIac, L0 MPALIOE Yy PEXUMI IPUPOJHOI 3yIMHKHU pOTOpa Micis
HOro IMITYJIbCHOTO PO3TOHY HEENEKTPHYHUMH 3aco0aMu (IMPONaTpoH, CTHCHEHE
MOBITPS TOLIO). 3a3HAYCHUN PEXKUM NPHUBAOIMBUNA THUM, IO TO3BOJSE B OJHOMY
MyCKy 1AeHTU(]IKYBaTU HEKOHTPOJIbOBAHUM UIKIUIMBUM MOMEHT HAaBKOJIO OCl
MiJBICY 1 ICTOTHO 3MEHIIIUTH Yac BUMIPIOBAaHHS. 3 METOO MOJAAIbIIOT0 BJOCKOHA-
JICHHS MIPUJIAAy 3alpONOHOBAHO BIAMOBUTHCS Bl BUMIPIOBAHHS ITOTOYHOIO 3HA-
YEeHHs1 KIHETHYHOTO MOMEHTY, a KOe(ILI€HT 3aracaHHs eKCHOHEHIIMHOT (yHKIii
1IeHTU(]IKYBaTH, CIIOCTEPIral0yM 32 a3UMYTHUM PYXOM YYTJIUBOTO €JI€eMEeHTa Ipu-
nany. binemn Toro, B cTaTTi MOKa3aHo, 110 MOYKHA HE BUMIPIOBATH [TOYATKOBE 3Ha-
YeHHs] KIHETUYHOI'O0 MOMEHTY, 3aMIHMBIIM BUMIp 1IeHTU(IKALI€I0 I[LOTO MapameT-
pa 3a CIOCTEPEXKEHHSMHU 332 TUM K€ a3UMYTHUM PYXOM UYYTJIUBOTO eleMeHTa. Y
[IbOMY BHIIAJIKy BiJilIa/la€ HEOOX1AHICTh Y HASIBHOCTI HAa YyTJIMBOMY €JIEMEHTI SIKUX
O0u TO Hi OyJI0 BY3IiB, MOB'SI3aHUX 3 MEPEIAUYCIO SIEKTPOKUBICHHS 1 €ICKTPUIHUX
CUTHAJIIB, YYTJIUBUI €JI€MEHT MOXe OyTH BUKOHAHUH SIK YUCTO MEXaHIYHUH elne-
MEHT, 110 Hece Ha co01 pOTOp, 1110 00EPTAETHCSI.

Jlns BCiX pO3IJITHYTHX BapiaHTIB BUMiproBaHHA (abo ifeHTudikarii) napa-
METPIB MMPOBEJCHO MAIIMHHE MOICTIOBAHHS, SIKE MATBEPIMIIO TIPAIe3aTHICTh 3a-
MIPONIOHOBAHOT METOTUKH.

[IpoTuBOpEeUne MEXKIy TOYHOCTHIO U BPEMEHEM OIPEIEICHUS TIIOCKOCTH T€0-
rpadUyecKoro MepuIMaHa CyImecTBEHHO OCIa0I0 ¢ MOsSBICHUEM aBTOMATHYECKUX
TUPOKOMITACOB M aJITOPUTMHUYECKUX METOJO0B 00pabOTKM HH(OpMAIUKA C HHX.
VYka3aHHbIE METOJBI MO3BOJISIFOT PACHIMPUTH CIIEKTP BO3MOXKHBIX PEKHUMOB pado-
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Thl THPOKOMIIACOB, UCIOJIB3ysd B TOM YHCIE M HETpaJWIMOHHBIE. B craThe pac-
CMaTpUBAETCsl aBTOMAaTHYECKUN JBYXCTENEHHOW Ha3eMHbIN rmpokommac, padoTa-
IOLUI B PEKUME €CTECTBEHHON OCTAHOBKHM POTOpA IIOCJIE €0 UMITYJIBCHOTO pas-
rOHa HEdJIEKTPUUECKUMHU CpeACTBaMU (MHPOMATPOH, CHKATHIM BO3AYyX U T.1.). YKa-
3aHHBIA PEKUM IPUBJIEKATEICH TE€M, YTO IO3BOJIIET B OJHOM ITYCKE MACHTH(HIIH-
pOBaTh HEKOHTPOJIUPYEMBI BpEeIHbIII MOMEHT BOKPYT OCH MOJ[BECa U CYILECTBEH-
HO YMEHBIIUTH BpeMsi u3MepeHus. C Lenblo AaJbHEHIero COBEpIIEHCTBOBAHUS
npubopa MpeasioKeHO OTKAa3aThCS OT U3MEPEHMs TeKYIIEro 3HaYeHUs] KMHEeTHuYe-
CKOTO MOMEHTa, a KO3()(OUIMEHT 3aTyXaHHs SKCIIOHEHIUAIbHOW (DYHKIIMH HJICH-
TuULIIpOBaTh, HAOMIOAs 32 A3UMYTAIBHBIM JABM)KEHUEM UYyBCTBUTEIBHOTO 3Jie-
MeHTa npubopa. bomee Toro, B crarbe IMOKa3aHO, YTO MOKHO HE H3MEPSThH
HayaJbHOE 3HAUEHUE KMHETHYECKOrO0 MOMEHTAa, 3aMEHUB U3MEpEHHe UICHTU(U-
Kaluei 3Toro nmapamerpa 1o HaOII0IeHUSIM 32 TEM K€ a3UMYTaJIbHBIM JABH)KEHUEM
YyBCTBUTEJIHLHOTO 3JIeMeHTa. B 3TOM ciyyae oTrnagaeT He0OXOAUMOCTh B HATUYUU
Ha YYBCTBHUTEIBHOM DJIEMEHTE KaKUX ObI TO HU OBLIO Y3JI0B, CBI3aHHBIX C Iepesa-
Yell AJeKTPONUTAHMS U AJIEKTPUUYECKUX CUTHAIIOB, YyBCTBUTEIbHBIN JIEMEHT MO-
KeT OBITh BBIIOJHEH KaK YHCTO MEXaHWYECKUH DJIEMEHT, HEeCYIHid Ha ceOe Bpa-
LIAIOIIUICSA POTOP.

JlJis BCeX pacCMOTPEHHBIX BAapPHAHTOB M3MEPEHUsS (MU UICHTH(PHUKAIIUHN) Ta-
paMeTpoB MPOBEACHO MAIIMHHOE MOJICIMPOBAHUE, MOJATBEPAMBILNEE PabOTOCHO-
COOHOCTB MPEITI0KEHHOM

Introduction

During construction of long tunnels, in surveying and military science,
geodesy, cartography and many other spheres of human activity the question of
determining the plane of geographical meridian in the place of measurement is
relevant. Ground gyroscopic compasses (GC) - both three-step and two-step -
are used to solve it. The traditional confrontation between measurement accura-
cy and the time required to take measurements has resulted in a wide variety of
technical solutions. The transition from measurement of the greatest deviations
of a sensitive element (SE) of GC relative to a meridian plane (points of rever-
sion) [1] to temporary methods [2], allowing to make measurements for time,
essentially less than period of oscillations of SE, became the appreciable mile-
stone in increase of efficiency of devices. A significant increase in the accuracy
of measurements was achieved by applying the principle of dual-channel, which
is realized in gyroscopy either by having two gyroscopes with oppositely di-
rected vectors of kinetic moments [3], or by additional software turns of the
PME during measurements [4,5]. The next step in improving the accuracy and
speed of GC was the use of algorithmic methods [6], which allow solving the
problem on the basis of the analysis of the current position of the PE during a
given time interval. In [7] a method of determining the meridian during the ac-
celeration of its rotor is proposed, which significantly reduces the measurement
time, and in [8] the possibility of determining the meridian position by three-
stage GC in the mode of natural stop of the rotor is considered.
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Task definition

The purpose of this paper is to develop a method of determining the posi-
tion of the meridian by two-step GC during natural — by exponential in time law
— stopping of the rotor. Application of the mentioned technique, since it does not
require transfer of electric power to the rotor in principle, will allow to refuse
placing of electric drive elements on the rotor, and, what is very important, to re-
fuse current leads, that is practically to eliminate mechanical connection be-
tween stationary and moving parts of GC. In this case, of course, it is necessary
to solve the issue of instantaneous (pulse) acceleration of the rotor by other -
non-electrical - means. This can be, for example, the use of a squib, compressed
water, or other means. In addition, the paper presents algorithms of information
processing, which allow determining the meridian by the results of observation
of GC, the rotor of which naturally stops.

Statement of basic material and research

The equation of motion of the PE of a two-stage GC, assuming that its
suspension axis is set vertically, is as follows

Ji+HQa=0, (1)

where J is the moment of inertia of the PM relative to the axis of suspension, H
is the kinetic momentum of the GC rotor, Qr is the horizontal component of the
angular velocity of the Earth at the place of measurement, a is the current angle
of deviation of the GC rotor axis from the north direction.

Assuming that the kinetic momentum of the rotor during the natural stop-
ping changes according to the law

H = He™, (2)

where Hy, is the initial value of the kinetic momentum, X is the decay index of
the exponential function, t is the current time, taking into account the notation

B =HQJ", 3
we write equation (1) as follows:
ad+ BeMa=0. (4)
Introduce a new independent variable
7=21"1( Be ™)°®, (5)

2
then with regard to the notations o' :%—j ua" =%Tf equation (1) will take the

form:
2’a” +z2a' +72°a = 0. (6)
Equation (6) is a Bessel equation and has a solution [9]:
a=CJy(z) +CYy(2), (7)
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where C; and C, are integration constants, Jo and Y, are Bessel functions of the
first and second orders, respectively, of “zero" order. Using the initial conditions

I1=7,=>a=q,0a =qa, (8)

determine the integration constants C; and C,, then, by performing simple trans-
formations using the recurrence relations for Bessel functions, we finally write
down the analytical law of motion of the PE of a two-stage GC at a natural rotor
stop in the form

=05 72{a[L (@) (2) -, @N @) &1 @%@ ~L@%@T ()

Keeping in mind that when the GC moves, the observed coordinate is the
angle a-«,, equation (9) can be represented as

a,f,(z,2,) + o, f,(z,2,) =f,(z2,2,), (10)
where f,(2,29) = 3,(2,)Y, (2) - 3o (DY, (2) — 2772,
f,(2,2,) = 35(2,)Yo(2) — 3 (2) Yo (2o) ,

f,(z,2)=2(a~a,) 7'z, "

If we assume that in the process of determining the position of the meridi-
an plane the initial value of the kinetic moment H,, can be measured and the de-
cay index of the exponential function A can be calculated from the analysis of
the measured dependence (2), then the desired initial deviation o, can be found
by minimizing the functional

Fla,, &) =2, f,(z,2,) + & f,(z, 2,) — f,(2,2,)
I. €. as a result of solving a system of algebraic equations
a, X2+ o X1 f, =21 f,,
a, X f,+ X2 =21,1,.

In order to confirm the efficiency of the proposed methodology, a com-
puter simulation was carried out, the only difference being that not an analytical
solution of equation (1) in the form of dependence (10) was used as a mathemat-
ical model of GK motion, but the result of the computer integration of equa-
tion (1). The scheme of the machine experiment is shown in fig. 1.

The two-stage GC simulator was a block for integrating the differential
equation (1), taking into account the change in the kinetic momentum according
to the law (2). Integration was performed at the following numerical values of
parameters: J=1,1607*10"°, Hus*; Q. = 3,65*10° s H,=0,432, Hums; 1 =
2.15*107, s and given initial conditions o = 3,697/540, rad; do = 4,08*10, s,
The mathematical model of the GC was a similar block of integration of the
same equation (1) with the same values of parameters, but the initial conditions
of the GC PE motion were unknown. The range of their variation was set as fol-

lows: aoe[—%;+%], rad; a age(-6;+6)*10, s In the first approximation, the
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step when changing the parameter o Was chosen Ac, :aﬁo, rad; and the step

when changing the parameter ¢, was chosen A« =10, s™. For each pair of pa-

rameters a0 and a0 (13*19=247 combinations), the result of integration of the
mathematical model was compared according to the least-squares method with
the behavior of the GC simulator on the interval t=0/200 sec with step
At=1 sec [10]. The "unrelatedness" is presented in tab. 1.

T
ay = 3,69——,rad
MmuTaTop rupokomnaca 540

&= 4,08-10~%, ¢ "1

A

A

v .
F(ag, dy) = NZ[(“ —ay) — (ay — ap)]? = min -

i=1

v

v

ay — %
: —6'6)-10"% o1
J& & Hilpg= D ay € (—6;6)-107%,¢
mT T
MaTtematunueckas mogeno K ag € (—%:%) ,rad

Fig. 1. Diagram of a machine experiment

Table 1.
Table of "unrelatedness”.ldentifiable parameters — agand dp.
First approximation F(a,, @) * 1073, rad 2
@p*10™, ¢t

6| 5| 4] -3]-2 -1 0 1 2 3 4 5 6
-9 41,8 416 41,4 412 41,1 40,9 40,7 40,6 405 40,3 40,2 40,1 40,0
-8 38,7 385 383 38,1 379 37,7 37,6 374 37,3 37,2 37,0 36,9 36,8
-7 355 353 351 349 347 346 344 343 341 340 339 338 337
-6 32,4 322 320 318 316 314 312 31,1 309 308 30,7 306 305
-5 29,3 29,1 288 286 284 251 281 279 278 276 275 274 273
-4 262 26,1 257 255 253 251 24,9 248 246 245 243 242 241
232 229 226 224 222 22,0 21,8 216 214 213 212 211 21,0
-2 20,1 19,8 195 19,3 19,0 18,8 18,6 184 18,3 18,1 180 179 178
-1 17,2 16,8 165 16,2 16,0 157 155 153 151 150 148 147 146
0 143 139 135 132 12,9 126 124 121 120 11,8 11,7 116 115
1 143 11,1 10,7 103 99 96 93 90 88 86 85 84 83
2 93 87 82 76 71 6,7 63 60 57 55 53 5,2 5,2
3
4

ao*n/540,pan
do

75 69 63 56 50 44 38 32 277 24 21 21 22
59 53 47 41 35 29 23 18 13 10 09751 12 17
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@p*10* ¢t
6543|2101 2]3]| 4 | 5| 6
5 63 59 55 51 48 45 43 41 40 40 41 42 45
6 83 81 78 76 74 73 72 71 71 72 73 74 16
7 109 10,7 10,6 10,5 10,4 10,3 10,3 10,3 10,3 10,3 104 106 107
8 13,7 136 135 134 134 134 134 134 134 135 136 137 139
9 16,7 16,6 165 165 165 16,5 165 165 16,6 167 168 169 17,0

As can be seen from Tablel, the smallest value of unrelatedness, equal to
Fi(ao, @0)=0,9751*103, rad ® occurs in the case of o = 4n/540, rad; and
do=4+10" st Further, near the point with the minimum "unrelatedness"
F1(oo, ao') the range was chosen ag € (3,0n/540; +5,97/540),rad, and ¢, €
(3,0; 5,9)*10™, s™, stepom Aag =0,17/540, rad; and Ady = 10, s** was calculated
in the second approximation. Its minimum value was F(oy, 0)=0,362+10, rad®
at ag = 3,7n/540,rad; and ¢ = 4,1*10™, s™. In the third approximation the range
was calculated aq € (3.607/540; 3,797/540), s Stepom Aoy =0.017/540, rad, u dg €
(4.00;4.29)*10'4, s with stepom Adg = 10 s, «Unrelatedness» F3(a, ao') in
the third approximation within the chosen calculation accuracy is absent at
0 = 3,697/540, rad; and ¢, = 4,08*10, s™.The coincidence of the parameters ag
and d, found in the process of identification with the specified initial conditions
at the input of the GC simulator testifies to the operability of the proposed meth-
odology.

The above-mentioned methodology of meridian determination assumes
that the parameters Hm and A, which characterize the process of natural rotor
stopping, are known. In order to provide the mentioned condition, it is necessary
to transfer the information about the current rotor speed from PE to the device
body during the whole measurement interval, which imposes additional mechan-
ical perturbations on the motion of the sensing element. Therefore, such variant
of the proposed technique is interesting: the latter is measured in the charr acter-
ized position of the PE, the value of the angular velocity of rotation of the rotor,
which uniquely determines the initial value Hm of the kinetic momentum during
its natural stopping, and the coefficient A is determined by its identification
along with the initial conditions agu dg. Let's simulate the proposed variant: let's
assume that in the mathematical model of GC, in addition to the initial condi-
tions ag and ¢y there is a third unknown parameter, A. We set the range of possi-
ble deviations A within 50%, i.e. approximately A € (1.00; 3.00)*10-3, s-1. Let us
find the minimum value of the "unrelatedness"” F1 (a0, a0, A) by comparing the
simulator and mathematical model motion for such (13*19*21=5187 combina-
tions) parameter values:

1) aoe(—£;+£], S stepom Aa, = —— , rad:;
60" 60 540 (1)

2) aye(-6,+6)*10%, s's  Ag;=10", 5™
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3) 1 €(1.00; 3.00)*10'3, 5T stepom AA= 0,1*1073 s,

We got a minimum of " unrelatedness " ®; (a0, d, A) = 0,9718*1073, rad?
with parameter values o = 4n/540, rad; ¢ = 4*107, s*; & = 2,2*107, s*. We
search for the minimum in the vicinity of this point, i.e. we carry out the second
and then the third approximation, as we did in the case of searching for the min-
imum by two parameters ay and d,. The resulting data is summarized in a tab. 2.

Table 2.
Finding the minimum for the three identifiable parameters oy, do, and A
Parameters «Unrelatedness,
2
0o, rad b, S A, 8™ rad
First approximation
Range (-9; +9)1/540  (-6; +6)-10*  (1,0; 3,0)-10°
-4 -4
Step /540 10 . 10 ) 09718:10°
The “best”  4m/540 4-10 2,2+10
Score
Second approximation
Range (3;5)1/540 (3:5)-10%  (2.1;2,3)-10°
-5 -5
Step 0,1~1/540 10 . 10 . 0.362:10"
The “best” 3,7m/540 4,1-10 2,14-10
score
Third approximation
Range (3,6; (4,01; 4,20)-10"  (2,131;
3,8)1/540 2,160)-10°
Step 0,01+7/540 10° 10°° 0,0
The “best” 3,697/540 4,08-10™ 2,150-10°
score

Analysis of table 2 shows that the proposed methodology can also be ap-
plied in the case where the value of the coefficient A is unknown; it, as well as
the initial conditions of motion o u Gy can be identified by observing the azi-
muthal motion of the GC PE.

However, an ideal option would be to abandon the measurement of the in-
itial value Hm of the value of the kinetic momentum of the HK, and replace the
measurement with the identification of the specified parameter. In this case, the
construction of the device would be significantly simplified, since there would
be no need for its electrical part. Let us simulate the measurement process in this
case. Let us assume that the initial value of kinetic momentum Hm may differ
from the declared value for the given gyro-motor up to 25%, i.e. lies in the range
Hm € (0,34; 0,54) , Nms. Let's carry out the procedure of searching for the min-
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imum of "unconformity" of the output signal of the simulator and the mathemat-
ical model of the HK in the conditions when there is no information about the
exact values of the parameters ayg, do, A 1 Hy,,. Let us make three approximations
in accordance with the methodology outlined above. The results of the four pa-
rameter identification procedure are summarized in table 3.

Table 3.
Finding the minimum for the four identifiable parameters oy, 6o, A 1 Hp,
Parameters «Unrelated
o, rad b, S A st H,, st [ness», rad?

First approximation
Range (-9:+9)n/540  (-6;+6)~10™ (1,0; 3,0)<10°  (0,34; 0,54)

-4 -4 -2
Step /540 10 . 10 . 10 097410
The “best”  4m/540 4+10 2,210 0,43
Score

Second approximation
Range (3;5)/540 (3;5)-10™ (2,1; 2,3)-10°  (0,42; 0,44)

5 5 -3

Step 0,1+7/540 10 . 10 . 10 036210
The “best”  3,7m/540 4,110 2,14+10 0,432
score

Third approximation
Range (3,6; 3,8)m/540 (4,01:4,2)-10* (2,131; 2,160)~10° (0,431;0,433)

Step 0,01+1/540 10°° 10°° 10 0.0
The “best”  3,691/540 4,08-10™ 2.150+10°3 0,4320 ’
Score

As can be seen from table 3, the position of the geographic meridian plane
by two-step GC can also be found when four parameters — the initial conditions
— are unknown before the start of measurement ay u éo motion of the PM of the
GC and the parameters A and Hm, which characterize the process of natural
stopping of the rotor. This is evidenced by almost complete coincidence of the
parameters found as a result of identification with their set values, as well as
"zero" value of the "misalignment" obtained in the third approximation.

Conclusions

1. The paper considers an automatic two-step gyrocompass, which allows to
determine the plane of geographic meridian by information about the current
position of the sensitive element of GC in the azimuth. It is proposed to ana-
lyze the movement of PE in the mode when the angular velocity of the rotor
of the device naturally decreases (the rotor is stopped). The choice of such
mode is not accidental. It can significantly reduce the time of measurements,
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because the implementation of pulse acceleration of the rotor will allow to

refuse the traditional operation of acceleration of the rotor, which requires a
certain time. Besides, information gathering in the process of natural stop-
ping of the rotor will allow to refuse in principle from mechanical connec-
tion between PE and the body of the device, which will lead to increase of
accuracy of measurements.

The paper discusses three sets of parameters to be identified:- two un-
knowns: the initial conditions of motion ag u dg. The initial value Hm of the
HC kinetic momentum is measured at the time of PE disentanglement, and
the decay index A of the exponential function is calculated on the basis of the
analysis of the current measured values H=H(t) kinetic momentum;- the un-
knowns are three: ag and ¢, and the decay index A of the exponential func-
tion. The current values of H=H(t) of the kinetic momentum are not meas-
ured, except for the initial value of Hm at the moment of PE disarticulation;
- there are four unknowns: the initial conditions of motion og and dy , the de-
cay parameter A of the exponential function and the initial value Hm of the
Kinetic momentum. It is shown that, in all three cases mentioned above, it is
possible to identify the corresponding unknown parameters, and, first of all,
the initial condition a0 of motion along the coordinate, by observing only
the azimuthal motion of the HQ PE.

Machine simulation of the proposed algorithms for processing the infor-
mation on the azimuthal motion of PE, confirmed the performance of the
proposed methodology.
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