
65 
П р и л а д и  т а  м е т о д и  к о н т р о л ю  

 

 

 

 

 

 

 

 

UDC 531.383  

 DOI: http://doi.org/10.20535/0203-3771372019186971  

V. M. Fedorov
1
, PhD, M. S. Dzerun

2
, student, N. I. Shtefan

3
, PhD 

ON THE USE OF NONLINEARITY CHARACTERISTICS OF THE 

PENDULUM OSCILLATORY SYSTEM TO DETERMINE THE 

INITIAL CONDITIONS OF ITS MOVEMENT 

 Розглядається поведінка маятникової коливальної системи під час дії    

навколо осі її обертання постійного неконтрольованого моменту. Показано, 

що визначити порізно початкове відхилення коливальної системи і зміщення 

центру її коливань під дією моменту протягом одного виміру - можна, аналі-

зуючи нелінійність спостережуваних коливань. Промодельовані алгоритми, 

засновані на розкладанні гармоніки у ряд із утриманням двох членів розкла-

дання. Зроблено висновки про межі запропонованої методики. 

 Рассматривается поведение маятниковой колебательной системы при дей-

ствии вокруг оси ее вращения постоянного неконтролируемого момента. По-

казано, что определить порознь начальное отклонение колебательной систе-

мы и смещение центра ее колебаний под действием момента в течение одно-

го измерения – можно, анализируя нелинейность наблюдаемых колебаний. 

Промоделированы алгоритмы, основанные на разложении гармоники в ряд с 

удержанием двух членов разложения. Сделаны выводы о границах предла-

гаемой методики. 

Introduction 

To reduce the time for determining the initial conditions of motion of os-

cillatory systems (OS), the method proposed in [1] is widely used. It consists in 

identifying the initial conditions according to the results of monitoring the mo-

tion of the oscillatory system. The presence of a constant uncontrolled impact 

shifts the center of oscillation of the system, introducing an error in the result. In 

the monograph [2] considered several ways to deal with this error. This is a 
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measurement with two different known oscillation frequencies and a subsequent 

algorithmic account of the correction, or the finding of stable and unstable equi-

librium positions (for pendulum systems) with the subsequent construction of 

the normal to the bisector of the angle between these two equilibrium positions. 

The considered methods suggest the presence of two measurement cycles: either 

with parameters providing different values of the natural frequency, or with ini-

tial conditions that differ by 1800. In both cases, this at least doubles the meas-

urement time. In [6], in order to reduce the measurement time, it is proposed to 

use the acceleration mode of the rotor of the pendulum gyroscopic oscillatory 

system. 

Formulation of the problem 

This article explores the possibility of determining the position of the cen-

ter of oscillations of the pendulum system during one measurement effect cycle 

by analyzing the nonlinearity that occurs in the case of a constant uncontrolled 

[3]. 

Main part 

The equation of motion of the pendulum oscillatory system has the form 
2 sin( ) m     , (1) 

where α is the angle of deviation of the pendulum from the position of stable 

equilibrium (from the position of the true vertical), 2 l    is the square of the 

natural frequency of oscillations of the pendulum,  is the pendulum, I  is the 

axial moment of inertia of the pendulum, m M I , M  is a constant uncon-

trolled moment around the axis of suspension of the pendulum.  

In the case of “small” angles  , the expansion is sin( )  , then the so-

lution of equation (1) under the initial conditions    

0t  ,     
0  ,     

0   (2) 

has the appearance    
1 2 2

0 0sin( ) ( ) cos( )t m t m                . (3) 

Since the initial condition 0 – is unknown, and the “observable” coordi-

nate is 0   , expression (3) is represented as follows:   

1 2

0 0 0sin( ) ( )(cos( ) 1)t m t              . (4) 

It can be seen from (4) that by observing the motion of the pendulum 

within the linear model corresponding to (1), one can find an estimate of the an-

gle 2

0 m  
 
between the initial position of the pendulum and the vertical posi-
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tion shifted under the action of a constant uncontrollable moment around the ax-

is of suspension, and not true value of 
0 . 

Let us try to find 
0  and 2m   separately, based on the assumption that 

the presence of a constant uncontrollable moment distorts the harmonic nature 

of the motion of the pendulum and the degree of this distortion depends on the 

magnitude of the moment and the amplitude of oscillations. To confirm this, we 

present graphs of the dependences of the function obtained as a result of inte-

grating equation (1) at three different positions of stable equilibrium and the 

same initial deviations of the pendulum from these equilibria (fig. 1), as well as 

at three different values of the initial deviation of the pendulum positions of sta-

ble equilibrium (fig. 2).  

 

Fig. 1. The dependence of the nature of the oscillations of the pendulum 

from the position of stable equilibrium 

The analysis of fig. 1 and fig. 2 allows us to conclude that the degree of 

distortion of the harmonic nature of the motion of the pendulum and the period 

of free oscillations increases significantly with increasing magnitudes of the 

moment and amplitude of oscillations.  

Using the perturbation method, we obtain a solution for the observed co-

ordinate 0( )    in the form: 
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Fig. 2. The dependence of the nature of the oscillations of a pendulum 

from the amplitude 
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m
a t a t

a m
t


              



   


 (5) 

 

Considering notation for unknowns  

1 02

m
R  


;     

2 0cos( )R a   ;  

3 0sin( )R a    ;     

2

4 212

a m
R   


 

(6) 

and known functions of time  

0( ) ;f t         1( ) 1;f t       2 ( ) cos( );f t t   

3( ) sin( );f t t       4 ( ) cos(2 )f t t   
(7) 

expression (5) takes the form:  
 
  

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )f t R f t R f t R f t R f t        . (8) 

Consider the investigated oscillatory system as a system with four inputs 

1R   4R  and one output ix . The output value ix  is measured at "n" discrete 
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points in time, and for these moments the coefficients 
1if   

4if  are known. As-

suming that the number of measurements of the output value exceeds the num-

ber of input values (    ), we write the matrix form of the overdetermined 

system of n linear equations with 4 unknowns:  

,X A R   (9) 

where X , R  are respectively n and 4 vectors,  ( 4)A n   matrix. 

According to the least squares method, the best estimate R̂  of the un-

known vector R  is obtained by performing the operations with the available in-

formation in accordance with the algorithm:  

ˆ ( )T TR A A A X     (10) 

Using expression (6), it is not difficult by the found estimates 
1R̂   

4R̂  to 

find the best estimates for true unknowns. 

2 3
ˆ ˆâ R R  ;     3

0

2

ˆ
ˆ arctg( )

ˆ

R

R
   ; 

4

2 2 2

2 3

ˆˆ 12

ˆ ˆ

m R

R R


 

 
;     4

0 12 2

2 3

ˆ12 ˆˆ
ˆ ˆ

R
R

R R


   


.  

(11) 

Produce a machine study of the health and basic properties of the pro-

posed algorithms. The oscillatory system will be simulated by solving its differ-

ential equation (1), noisy noise in the form of "white noise" intensity m .  

The impact of recruitment time 

Fig. 3 shows the dependence of the error 0̂ on the time of information 

collection. A computer experiment was conducted with a OS, the oscillation pe-

riod of which is 540 cT  . For three different combinations of 
2

m


 and 0 , the 

work of the algorithms was simulated depending on the time of information 

gathering. From fig. 3 it can be seen that at small intervals of observation of in-

formation (0,1нT   0,2) T , the estimate error 0
ˆ  is quite large and has a 

sharply falling character, which passes into an oscillatory one with increasing 

observation interval. 

The influence of the initial deviation of the OS relative to the equilib-

rium position 

Machine modeling of the algorithms allows us to reveal another interest-

ing feature of the investigated algorithm - the minimum error of the determina-
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tion of the vertical at the initial angles of deviation of the CS from the center of 

the vibrational order of 10 °. This fact may have the following explanation. The 

 

Fig. 3. Dependence of error 0
ˆ  estimates 0̂  of the initial deviation of 

the OS from the time нT  

essence of the proposed algorithm is to determine the displacement of the posi-

tion of dynamic equilibrium by identifying the nonlinear components of the 

movement of the device. Nonlinearity is manifested the more, the greater the 

amplitude of oscillation of the moving part of the device. Consequently, with an 

increase in the initial deviation of the OS from the center of oscillations, the er-

ror in determining the vertical by the proposed method decreases. However, this 

reduction has a limit, due to the fact that the analytical law of motion of the OS, 

which forms the basis of the algorithm for determining the vertical, is obtained 

by solving a nonlinear equation in which the trigonometric function sin( )  is 
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replaced by the first two terms of its expansion in a Taylor series. Therefore, 

strictly speaking, the analytical law of motion of the form (5) is incorrect for 

large values of the amplitudes of the oscillations and, therefore, the algorithm 

built on its basis, with large amplitudes, gives a large error that increases with 

the amplitude. Graphically, the dependence of the error 
0

ˆ from the initial an-

gles of deviation of the CS with respect to the center of oscillations at certain 

fixed disturbing moments is shown in fig. 4. 

 

Fig. 4. Dependence of error 0
ˆ  estimates 0̂  from the angle of  

deviation of the OS with respect to the equilibrium position of 

the oscillation 

The effectiveness of the proposed method 

The analysis also shows that the proposed method is not effective for all 

vibrations. If we take for comparison as a basic variant of the representation of 
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the motion of a CS in the form of an unbiased harmonic, then the error in deter-

mining the meridian by the basic method is 2m  . In order to determine the ef-

fectiveness of the proposed method in comparison with the baseline, the de-

pendence of the value 2

0
ˆ m   from the magnitudes of perturbing moments 

and angles of deviation of the OS from the center of oscillation. Where the re-

duced ratio is less than one (
0

ˆ   
2

m


), the use of the proposed method is expe-

dient, with the other values of amplitudes and perturbations the basic option is 

more preferable. From fig. 5 it follows that the efficiency of the method pro-

posed in the work increases with the increase of the constant perturbation mo-

ment, as well as with the approximation of the initial deviation of the COP from 

the center of oscillation to 10 °.   

 

Fig. 5. The dependence of the magnitude 2

0
ˆ m  from the magni-

tudes of the disturbing moments and angles of deviation of the 

OS with respect to the equilibrium position of the oscillations 
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Ways to improve the proposed methodology 

As follows from the foregoing, the proposed method is fundamentally ca-

pable of determining in one measurement both the initial deviation of the pendu-

lum from the vertical and the magnitude of the uncontrolled moment. The low 

accuracy of this definition is due to the fact that the algorithm for estimating the 

initial deflection of the pendulum is built on an insufficiently accurate model of 

the motion of the pendulum (only the first two terms of the expansion in the se-

ries are retained in the equation of motion). If, as a mathematical model of the 

motion of a OS, we consider not the analytical dependence (5), but the result of 

integrating the differential equation (1), then the above complexity can be cir-

cumvented [5]. In this case, the computational tools integrate equation (1) for all 

possible values of the initial conditions and the magnitudes of the uncontrollable 

moment and will make a comparison using the least squares method with the ac-

tual motion of the pendulum. 

 

Fig. 6. Scheme of the machine experiment  

oscillatory system 
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Findings  

1. In work the pendulum oscillatory system (OS) is considered, around which 

axis of rotation a constant uncontrollable moment acts. It is shown that, ana-

lyzing the nonlinear properties of the CS, it is possible to determine both the 

indicated time and the initial deviation of the CS during one measurement. 

2. Based on the least squares method, an information processing algorithm has 

been developed that takes into account the first two terms of the harmonic 

expansion in a row. Explanation of the limitations inherent in the developed 

algorithm and the reasons causing these limitations are explained.  

3. It is indicated that the further development of this method can be the use of 

OLS in its machine form, which will make it possible to analyze the nonlin-

ear properties of a CS in full volume.  
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