УДК 531.383

С. В. Головач

КОМПЛЕКСНАЯ АЛГОРИТМИЧЕСКАЯ КОМПЕНСАЦИЯ ТЕМПЕРАТУРНОГО ДРЕЙФА ИЗМЕРИТЕЛЬНОГО КАНАЛА ТРЕХОСНОГО АКСЕЛЕРОМЕТРА В СОСТАВЕ БИНС

Введение

В классическом варианте построения бесплатформенной инерциальной навигационной системы (БИНС) основной ее частью является блок измерительных датчиков для определения в инерциальном пространстве углового и линейного положения объекта, на котором установлена БИНС. В состав такого блока обязательно входят измерители абсолютной угловой скорости и измерители кажущегося ускорения объекта в инерциальной системе координат. В качестве измерителей кажущегося ускорения в большинстве случаев выступают маятниковые или микромеханические акселерометры (АК). Главным недостатком таких АК является высокая температурная зависимость работы их чувствительных элементов, что приводит к увеличению погрешности определения линейного положения объекта в инерциальной системе координат. Влияние колебаний температуры внешней среды на работу чувствительных элементов АК часто устраняют путем различных конструктивных решений, суть которых заключается в применении систем термостатирования [1]. При жестких требованиях к размерам и потребляемой мощности, термостатируемый объем в БИНС должен быть минимальным, поэтому в некоторых случаях вспомогательные электронные блоки обработки сигналов трехосного АК (ТАК), которые входят в измерительный канал, конструктивно размещают вне кожуха термостата.

Основным элементом электронного блока обработки сигналов акселерометров является аналогово-цифровой преобразователь (АЦП). Как правило, диапазон рабочих температур АЦП относительно широкий: от - 40 до +85°C [2]. Однако в таких устройствах действие температуры вызывает возникновение погрешностей в виде смещения нуля и дрейфа коэффициента усиления [3]. На практике для определения и компенсации погрешностей АЦП от воздействия температуры часто проводят дополнительные мероприятия с использованием прецизионного калибратора напряжения и термокамеры [4; 5].

Постановка задания

В данной статье описан метод комплексной термокомпенсации всего измерительного канала (ИК) ТАК без дополнительной автономной калибровки блока обработки и преобразования сигналов АК.

Описание исследуемого образца трехосного акселерометра

Для отработки метода, исследования проводились с трехосным АК, который является составной частью БИНС с повышенными точностными характеристиками для системы управления ракеты носителя.

Блок преобразования и обработки сигналов (БПС) такого трехосного АК предназначен для преобразования аналоговых сигналов трех АК (расположенных по трем осям чувствительности БИНС, рис. 1) в виде сигналов постоянного тока в диапазоне ± 15 мА в цифровую форму в виде 16-разрядных целых чисел в дополнительном коде, пропорциональных приращению входного сигнала по времени за период цикла преобразования (τ).

Рис. 1. Схема расположения осей чувствительности трехосного акселерометра

По схемотехническому решению БПС относится к классу интегрирующих АЦП с уравновешиванием заряда, сравнивающим приращение входного тока за период цикла преобразования с определенным элементарным значением заряда Q_e , определяющим цену младшего разряда вы-

ходного целочисленного кода [2]. Тогда, принимая, что входной ток во время цикла преобразования предполагается неизменным, приращение заряда за это время представляется простым произведением:

$$Q_e = I_{x(v,z)} \times \tau$$

Представив значение порогового заряда как аналогичное по форме произведение эквивалентной разрешающей способности по току на длительность цикла преобразования, получим:

$$Q_e = I_e \times \tau$$
.

Принцип работы БПС заключается в оценке и последующем преобразовании в цифровую форму отношения $Q_{x(y,z)} / Q_e$, которое, с учетом приведенного выше, сводится к отношению токов $I_{x(y,z)} / I_e$. Тогда с учетом инструментального смещения нуля, характеристика преобразования БПС по каждому из каналов АК (*x*, *y*, *z*) описывается формулой:

$$N_{x(y,z)} = round \left[\left(I_{x(y,z)} + \Delta I_{sx(y,z)} \right) / I_e \right],$$

где $I_{x(y,z)}$ – входной ток канала x(y, z) БПС, [мА];

Δ*I*_{sx(y,z)} – приведенное ко входу инструментальное смещение нуля соответствующего ИК БПС, [мА];

 $I_e = Q_e / \tau$ – эквивалентная разрешающая способность БПС по току [мА];

round – операция округления до ближайшего целого;

N_{x(y, z)} – значение целочисленного цифрового кода на выходе БПС, [1/цикл].

Таким образом, произведение $N_{x(y,z)} \times Q_e$ имеет размерность [(мА×с)/цикл] и представляет собой квантованное по уровню значение приращения интеграла входного сигнала за период цикла преобразования.

На практике для удобства применяется другая форма записи формулы характеристики преобразования:

$$N_{x(y,z)} = round \left[K_{x(y,z)} \times \left(I_{x(y,z)} + \Delta I_{sx(y,z)} \right) \right], \tag{1}$$

где $K_{x(y,z)} = 1/I_e$ – масштабный коэффициент ИК x(y,z), [мА×цикл⁻¹].

Выражение (1) может быть представлено в виде:

$$N_{x(y,z)} = K_{x(y,z)} \times I_{x(y,z)} + K_{x(y,z)} \Delta I_{sx(y,z)} = N_{cx(y,z)} + \Delta N_{sx(y,z)},$$
(2)

где $N_{cx(y,z)}$ – центрированное значение цифрового кода на выходе ИК, [1/цикл];

 $\Delta N_{sx(y,z)}$ – приведенное к выходу смещение нуля, [1/цикл].

Очевидно, что задав равные по модулю, но противоположные по знаку значения входного тока, и при этом, зафиксировав соответствующие значения выходного кода $N_{x(y,z)}^+$ и $N_{x(y,z)}^-$, можно определить:

a)
$$\Delta N_{sx(y,z)} = \left(N_{x(y,z)}^{+} + N_{x(y,z)}^{-}\right)/2$$
 – приведенное к выходу смеще-
ние нуля, (3)

б) $N_{cx(y,z)}^{p} = \left(N_{x(y,z)}^{+} + N_{x(y,z)}^{-}\right)/2$ – положительное центрированное значение цифрового кода на выходе БПС, соответствующее значению входного тока, равному $I_{x(y,z)}^{p}$, (4)

при этом для каждого ИК x(y, z) могут быть рассчитаны

в)
$$K_{x(y,z)} = N_{cx(y,z)}^+ / I_{x(y,z)}^+$$
 – значение масштабного коэффициен-
та ИК, (5)

г)
$$\Delta I_{sx(y,z)} = \Delta N_{sx(y,z)} / K_{x(y,z)}$$
 – приведенное ко входу смещение нуля.

К параметрам инструментального смещения нуля $\Delta I_{sx(y,z)}$ (или $\Delta N_{sx(y,z)}$) наряду с требованиями, аналогичными к $K_{x(y,z)}$, предъявляется требование минимизации его (смещения) абсолютной величины, т.к. от его уровня зависит динамический диапазон преобразовываемого сигнала.

Схемотехническая реализация БПС, примененного в исследуемом БИНС, выполняя требования минимизации временного дрейфа, не обеспечивает того же в отношении температурного, что требует принятия дополнительных мер для компенсации его влияния на результат преобразования.

Принцип комплексной термокомпенсации измерительного канала трехосного АК

Температурный дрейф термостатированного трехосного АК проявляется в том, что при не зависящем от температуры значении входного тока $I_{x(y,z)}$ каждого ИК наблюдается существенная с точки зрения точности преобразования погрешность значений выходных кодов $N_{x(y,z)}$, которая обусловлена влиянием изменения температуры окружающей среды. На основании наблюдения факта воспроизводимости температурного дрейфа в серии повторяющихся испытаний можно полагать, что существует функция $f_{x(y,z)}^{T}(\Delta T)$, которая с достаточной точностью аппроксимирует зависимость выходной информации каналов трехосного АК от изменения температуры ΔT . Так как в составе БПС предусмотрено наличие датчика температуры, то аппроксимирующая функция $f_{x(y,z)}^{T}(\Delta T)$ трансформируется Π рилади та методи контролю в другую – $F_{x(y,z)}^{T}(N_{t})$, где N_{t} – выходной код термодатчика. Такая функция устанавливает взаимно однозначное соответствие между показаниями термодатчика и значениями выходного кода БПС. С учетом того, что БПС предназначен для преобразования значений выходного тока в цифровую форму, функция должна быть от двух независимых переменных

$$N_{x(y,z)}(I_{x(y,z)}, N_t) = F_{x(y,z)}^T(I_{x(y,z)}, N_t).$$
(6)

В соответствии с выражениями (2) – (4) для каждой пары значений $\{I_{x(y,z)}, N_t\}$ должно существовать однозначное представление выходного кода ИК ТАК $N_{x(y,z)}$ в виде суммы его центрированного значения и приведенного к выходу смещения нуля, отсюда следует, что функция (6) представима в виде суммы двух функций

$$F_{x(y,z)}^{T}\left(I_{x(y,z)},N_{t}\right) = N_{cx(y,z)}\left(I_{x(y,z)},N_{t}\right) + N_{sx(y,z)}\left(I_{x(y,z)},N_{t}\right).$$
(7)

Рассмотрим первое слагаемое в правой части уравнения (7). В соответствии с назначением БПС, для любого N_t оно должно представлять линейную функцию от входного тока. По аналогии с выражением (2) его можно представить в виде:

$$N_{cx(y,z)}(I_{x(y,z)}, N_t) = K_{x(y,z)}(N_t) \times I_{x(y,z)},$$
(8)

здесь $K_{x(y,z)}(N_t)$ представляет функцию, отражающую зависимость масштабного коэффициента ИК (x, y, z) ТАК от показаний датчика температуры. Для описания относительного изменения центрированного значения цифрового кода ИК ТАК вызванного изменением температуры введем в рассмотрение нормированную аппроксимирующую функцию $F_{cx(y,z)}^{T}(N_{t})$

$$N_{cx(y,z)}(I_{x(y,z)}, N_t) = N_{cx(y,z)}(I_{x(y,z)}, 0) \times F_{cx(y,z)}^T(N_t)$$

с учетом уравнения (5) получим:

$$N_{cx(y,z)}(I_{x(y,z)}, N_t) = \left[K_{x(y,z)}(0) \times F_{cx(y,z)}^T(N_t)\right] \times I_{x(y,z)}.$$
(9)

Из сопоставления уравнений (8) и (9) следует что

$$K_{x(y,z)}(N_t) = K_{x(y,z)}(0) \times F_{cx(y,z)}^T(N_t).$$

Таким образом, нормированная аппроксимирующая функция $F_{cx(v, z)}^{T}(N_{t})$ описывает относительное изменение центрированного значения цифрового кода на выходе ИК ТАК при неизменном входном токе, вызванное изменением температуры относительно нормальных условий работы ($\Delta T=0$). Эта функция тождественна функции, которая описывает относительное изменение масштабного коэффициента ИК ТАК вызванное изменением температуры окружающей среды.

Второе слагаемое в уравнении (6) по определению не зависит от входного тока (3), т.е. является функцией одной переменной N_t

$$\Delta N_{sx(y,z)} \Big(I_{x(y,z)}, N_t \Big) = \Delta N_{sx(y,z)} \Big(N_t \Big).$$
⁽¹⁾

Так как в практике аппроксимации температурных зависимостей широко используется подход с применением нормированных аппроксимирующих функций [5], представим аддитивную температурную погрешность смещения нуля в виде

$$\Delta N_{sx(y,z)}(N_t) = \Delta N_{sx(y,z)}(0) + \left(\Delta N_{sx(y,z)}^{\max} - \Delta N_{sx(y,z)}^{\min}\right) \times F_{sx(y,z)}^T(N_t)$$

или в более простой форме:

$$\Delta N_{sx(y,z)}(N_t) = \Delta N_{sx(y,z)}(0) + \Delta^{\max} \Delta N_{sx(y,z)} \times F_{sx(y,z)}^T(N_t),$$

где $\Delta N_{sx(y,z)}(0)$ – значение приведенного к выходу смещения нуля при нормальных условиях работы; $\Delta^{\max}\Delta N_{sx(y,z)}$ – максимальное изменение смещения нуля в диапазоне рабочих температур; $F_{sx(y,z)}^{T}(N_t)$ – аппроксимирующая функция, нормированная по отношению к максимальному изменению смещения нуля, зафиксированному в рабочем диапазоне температур.

Очевидно, что для $F_{sx(y,z)}^{T}(N_{t})$ и $F_{cx(y,z)}^{T}(N_{t})$ должны выполняться следующие условия:

$$\begin{cases} F_{cx(y, z)}^{T} \left(N_{t} \right) = 1 \\ F_{sx(y, z)}^{T} \left(N_{t} \right) = 0. \end{cases}$$

Конечная цель термокомпенсации температурной погрешности ИК ТАК заключается в обработке выходной информации $N_{x(y,z)}$, полученной при произвольной текущей температуре корректирующим алгоритмом для расчета прогнозного значения $\hat{N}_{x(y,z)}(0)$ которое могло бы быть сформированным при том же входном токе в нормальных условиях работы. На основании изложенных исходных предпосылок алгоритм корректирующего звена может быть представлен схематически (рис. 2).

Необходимыми априорными данными для работы такого алгоритма являются:

1) приведенное к выходу смещение нуля $\Delta N_{sx(y,z)}(0)$, измеренное в нормальных условиях;

Рис. 2. Схема корректирующего звена температурной погрешности измерительного канала АК

- 2) максимальное изменение смещения нуля $\Delta^{\max} \Delta N_{sx(y,z)}$, зафиксированное в рабочем диапазоне температур;
- 3) нормированная аппроксимирующая функция термозависимости смещения нуля $F_{sx(y,z)}^{T}(N_{t});$
- 4) нормированная аппроксимирующая функция термозависимости центрированного значения $F_{cx(y,z)}^{T}(N_{t})$.

Функции $F_{sx(y, z)}^{T}(N_{t})$ и $F_{cx(y, z)}^{T}(N_{t})$ могут быть получены путем обработки выходных сигналов ИК ТАК в ходе температурных испытаний по соответствующей методике. Обычно такие функции представляют собой степенной ряд вида:

$$F^{T}(N_{t}) = 1 + a_{1} \times N_{t} + a_{2} \times (N_{t})^{2} + a_{3} \times (N_{t})^{3} + a_{1} \times N_{t} + \dots a_{t} \times (N_{t})^{n},$$

где *п* – порядок функции.

В простейшем случае, аппроксимирующие функции могут оказаться линейными, в общем случае, когда линейная аппроксимация не удовлетворяет требованиям заданной точности, требуется полиномиальная, сплайновая или экспоненциальная аппроксимация.

Проведение температурных исследований для проверки работы алгоритма комплексной термокомпенсации

Испытания ТАК проводились в термокамере с возможностью программного задания следующих температурных режимов: 5°C, 15°C, 20°C, 30°C, 35°C. Каждый температурный режим отрабатывался в течении 3 часов, при этом выходная информация ИК ТАК регистрировалась компьютером с необходимым пакетом технических программ.

На рис. 3 представлены графики температурных дрейфов ТАК по каждой из его осей чувствительности (*x*, *y*, *z*).

Рис. 3. Температурные дрейфы ИК АК

Результаты обработки выходной информации корректирующим алгоритмом, который был реализован на основе описанных выше нормированных аппроксимирующих функций, представлен на рис. 4, рис. 5 в виде определенного с помощью трех каналов АК модуля ускорения свободного падения $g [m/c^2]$.

Рис. 4. Расчет модуля ускорения свободного падения на основании экспериментальных данных и спрогнозированных значений

На графике (рис. 4) представлен результат, полученный путем теоретических расчетов прогнозируемых сигналов акселерометров после коррекции экспериментальных данных. На рис. 5 представлены результаты отработки корректирующего звена при тех же температурных режимах.

Рис. 5. Результат экспериментальной отработки корректирующего звена

Выводы

В работе представлен метод эффективного сочетания двух нормированных аппроксимирующих функций для термокомпенсации измерительных каналов трехосного акселерометра. Успешность применения такого метода подтверждается теоретическими расчетами прогнозируемых сигналов акселерометров и экспериментальными испытаниями корректирующего звена.

Отличие рассматриваемого метода от наиболее распространенных в практике компенсации температурных зависимостей акселерометрических измерительных каналов БИНС заключается в отсутствии необходимости автономной термокомпенсации электронных блоков обработки сигналов.

Данный метод может быть использован для БИНС, конструктивные решения которых не предусматривают температурной стабилизации электронных блоков обработки аналоговых сигналов инерциальных датчиков.

Перспектива дальнейших исследований

Компенсация температурных дрейфов измерительных каналов трехосного акселерометра может быть усовершенствована путем исследования влияния динамических нагрузок при испытаниях в различных температурных режимах.

Список использованной литературы

- 1. Венгеровский Л. В. Системы термостатирования в радиоэлектронике / Л. В. Венгеровский, А. Х. Ванштейн. М. : Энергия, 1969. 80 с.
- Analog to Digital Converter > Precision ADC (<=10MSPS) [Электронный ресурс] / Texas Instruments: официальный сайт производителя. Режим доступа: http://www.ti.com/lsds/ti/data-converters/precision-adc-less-10msps-technical-documents.page
- Пат. 2399156 Российская Федерация, МПК7 Н 03 М 1/10, Н 03 М 1/06. Способ коррекции погрешностей аналого-цифрового преобразования и устройство для его осуществления / Валиков В. В.; патентообладатель ООО «Научно-производственное объединение "МИР"». – № РД0075560; заявл. 18.09.2009; опубл. 10.09.2010. – 3 с.
- IEEE, 2005. IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition and Analysis // IEEE Std. 1554-2005.
- Claudia C., Meruane Naranjo. Analysis and Modeling of MEMS base Inertial Sensors / KTH Electrical Engineering. – Stockholm, 2008. – P. 51.